A critical evaluation of datasets for investigating IDSs and IPSs researches

J. Nehinbe
{"title":"A critical evaluation of datasets for investigating IDSs and IPSs researches","authors":"J. Nehinbe","doi":"10.1109/CIS.2011.6169141","DOIUrl":null,"url":null,"abstract":"Complex and new cases of intrusions, new bugs, security issues and vulnerabilities are evolving everyday for a number of reasons. Consequently, researchers in the domains of Intrusion Detection Systems and Intrusion Prevention Systems constantly design new methods to lessen the aforementioned security issues. However, getting suitable datasets for evaluating various research designs in these domains is a major challenge for the research community, vendors and data donors over the years. As a result, most intrusion detection and prevention methodologies are evaluated using wrong categories of datasets because the limitations of each category of evaluative datasets are unknown. Therefore, this paper presents a critique of the challenges associated with evaluative datasets for investigating intrusion detection and prevention methodologies and how these challenges can be lessened. Finally, these analyses will effective guide researchers and vendors in securing evaluative datasets for validating the intrusion detection and prevention systems.","PeriodicalId":286889,"journal":{"name":"2011 IEEE 10th International Conference on Cybernetic Intelligent Systems (CIS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 10th International Conference on Cybernetic Intelligent Systems (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2011.6169141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Complex and new cases of intrusions, new bugs, security issues and vulnerabilities are evolving everyday for a number of reasons. Consequently, researchers in the domains of Intrusion Detection Systems and Intrusion Prevention Systems constantly design new methods to lessen the aforementioned security issues. However, getting suitable datasets for evaluating various research designs in these domains is a major challenge for the research community, vendors and data donors over the years. As a result, most intrusion detection and prevention methodologies are evaluated using wrong categories of datasets because the limitations of each category of evaluative datasets are unknown. Therefore, this paper presents a critique of the challenges associated with evaluative datasets for investigating intrusion detection and prevention methodologies and how these challenges can be lessened. Finally, these analyses will effective guide researchers and vendors in securing evaluative datasets for validating the intrusion detection and prevention systems.
对调查入侵防御系统和入侵防御系统研究的数据集进行关键评估
由于各种原因,复杂的新入侵案例、新错误、安全问题和漏洞每天都在不断发展。因此,入侵检测系统和入侵防御系统领域的研究人员不断设计新的方法来减少上述安全问题。然而,获得合适的数据集来评估这些领域的各种研究设计是研究社区、供应商和数据提供者多年来面临的主要挑战。因此,大多数入侵检测和防御方法都是使用错误的数据集类别进行评估的,因为每种评估数据集类别的局限性是未知的。因此,本文提出了与调查入侵检测和预防方法的评估数据集相关的挑战的批评,以及如何减少这些挑战。最后,这些分析将有效地指导研究人员和供应商保护评估数据集,以验证入侵检测和预防系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信