{"title":"Properties of semi-conjugate gradient methods for solving unsymmetric positive definite linear systems","authors":"Na Huang, Yuhong Dai, D. Orban, M. Saunders","doi":"10.1080/10556788.2023.2189716","DOIUrl":null,"url":null,"abstract":"The conjugate gradient (CG) method is a classic Krylov subspace method for solving symmetric positive definite linear systems. We analyze an analogous semi-conjugate gradient (SCG) method, a special case of the existing semi-conjugate direction (SCD) methods, for unsymmetric positive definite linear systems. Unlike CG, SCG requires the solution of a lower triangular linear system to produce each semi-conjugate direction. We prove that SCG is theoretically equivalent to the full orthogonalization method (FOM), which is based on the Arnoldi process and converges in a finite number of steps. Because SCG's triangular system increases in size each iteration, Dai and Yuan [Study on semi-conjugate direction methods for non-symmetric systems, Int. J. Numer. Meth. Eng. 60(8) (2004), pp. 1383–1399] proposed a sliding window implementation (SWI) to improve efficiency. We show that the directions produced are still locally semi-conjugate. A counter-example illustrates that SWI is different from the direct incomplete orthogonalization method (DIOM), which is FOM with a sliding window. Numerical experiments from the convection-diffusion equation and other applications show that SCG is robust and that the sliding window implementation SWI allows SCG to solve large systems efficiently.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2023.2189716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The conjugate gradient (CG) method is a classic Krylov subspace method for solving symmetric positive definite linear systems. We analyze an analogous semi-conjugate gradient (SCG) method, a special case of the existing semi-conjugate direction (SCD) methods, for unsymmetric positive definite linear systems. Unlike CG, SCG requires the solution of a lower triangular linear system to produce each semi-conjugate direction. We prove that SCG is theoretically equivalent to the full orthogonalization method (FOM), which is based on the Arnoldi process and converges in a finite number of steps. Because SCG's triangular system increases in size each iteration, Dai and Yuan [Study on semi-conjugate direction methods for non-symmetric systems, Int. J. Numer. Meth. Eng. 60(8) (2004), pp. 1383–1399] proposed a sliding window implementation (SWI) to improve efficiency. We show that the directions produced are still locally semi-conjugate. A counter-example illustrates that SWI is different from the direct incomplete orthogonalization method (DIOM), which is FOM with a sliding window. Numerical experiments from the convection-diffusion equation and other applications show that SCG is robust and that the sliding window implementation SWI allows SCG to solve large systems efficiently.