Trustworthiness assessment in multimodal human-robot interaction based on cognitive load

M. Kirtay, Erhan Öztop, A. Kuhlen, M. Asada, V. Hafner
{"title":"Trustworthiness assessment in multimodal human-robot interaction based on cognitive load","authors":"M. Kirtay, Erhan Öztop, A. Kuhlen, M. Asada, V. Hafner","doi":"10.1109/RO-MAN53752.2022.9900730","DOIUrl":null,"url":null,"abstract":"In this study, we extend our robot trust model into a multimodal setting in which the Nao robot leverages audio-visual data to perform a sequential multimodal pattern recalling task while interacting with a human partner who has different guiding strategies: reliable, unreliable, and random. Here, the humanoid robot is equipped with a multimodal auto-associative memory module to process audio-visual patterns to extract cognitive load (i.e., computational cost) and an internal reward module to perform cost-guided reinforcement learning. After interactive experiments, the robot associates a low cognitive load (i.e., high cumulative reward) yielded during the interaction with high trustworthiness of the guiding strategy of the partner. At the end of the experiment, we provide a free choice to the robot to select a trustworthy instructor. We show that the robot forms trust in a reliable partner. In the second setting of the same experiment, we endow the robot with an additional simple theory of mind module to assess the efficacy of the instructor in helping the robot perform the task. Our results show that the performance of the robot is improved when the robot bases its action decisions on factoring in the instructor assessment.","PeriodicalId":250997,"journal":{"name":"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN53752.2022.9900730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this study, we extend our robot trust model into a multimodal setting in which the Nao robot leverages audio-visual data to perform a sequential multimodal pattern recalling task while interacting with a human partner who has different guiding strategies: reliable, unreliable, and random. Here, the humanoid robot is equipped with a multimodal auto-associative memory module to process audio-visual patterns to extract cognitive load (i.e., computational cost) and an internal reward module to perform cost-guided reinforcement learning. After interactive experiments, the robot associates a low cognitive load (i.e., high cumulative reward) yielded during the interaction with high trustworthiness of the guiding strategy of the partner. At the end of the experiment, we provide a free choice to the robot to select a trustworthy instructor. We show that the robot forms trust in a reliable partner. In the second setting of the same experiment, we endow the robot with an additional simple theory of mind module to assess the efficacy of the instructor in helping the robot perform the task. Our results show that the performance of the robot is improved when the robot bases its action decisions on factoring in the instructor assessment.
基于认知负荷的多模态人机交互可信度评估
在本研究中,我们将机器人信任模型扩展到一个多模态环境,其中Nao机器人在与具有不同指导策略(可靠、不可靠和随机)的人类伙伴交互时,利用视听数据执行顺序的多模态模式回忆任务。在这里,人形机器人配备了一个多模态自动联想记忆模块来处理视听模式以提取认知负荷(即计算成本),并配备了一个内部奖励模块来执行成本导向的强化学习。通过交互实验,机器人将交互过程中产生的低认知负荷(即高累积奖励)与同伴指导策略的高可信度相关联。在实验的最后,我们给机器人一个自由的选择,选择一个值得信赖的指导员。我们展示了机器人对一个可靠的伙伴形成信任。在同一实验的第二个设置中,我们赋予机器人一个额外的简单的心智理论模块来评估指导者在帮助机器人执行任务方面的功效。我们的研究结果表明,当机器人的动作决策基于教练的评估因素时,机器人的性能得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信