{"title":"Ultrasound image segmentation by using a FIR neural network","authors":"Nima Torbati, A. Ayatollahi, A. Kermani","doi":"10.1109/IRANIANCEE.2013.6599759","DOIUrl":null,"url":null,"abstract":"Ultrasound (US) image segmentation is a difficult task because of its heavy speckle noise, low quality and blurry boundaries. In this paper, a new neural network based method is proposed for ultrasound images segmentation. A modified self organizing map (SOM) network, named finite impulse response SOM (FIR-SOM), is utilized to segment ultrasound images. A two dimensional (2D) discrete wavelet transform (DWT) is used to build the input feature space of the network. Experimental results show that FIR-SOM discovers the pattern of the input image properly and is robust against noise. Segmentation results of breast ultrasound images (BUS) demonstrate that there is a strong correlation between tumor region selected by a physician and the tumor region segmented by our proposed method.","PeriodicalId":383315,"journal":{"name":"2013 21st Iranian Conference on Electrical Engineering (ICEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 21st Iranian Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2013.6599759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Ultrasound (US) image segmentation is a difficult task because of its heavy speckle noise, low quality and blurry boundaries. In this paper, a new neural network based method is proposed for ultrasound images segmentation. A modified self organizing map (SOM) network, named finite impulse response SOM (FIR-SOM), is utilized to segment ultrasound images. A two dimensional (2D) discrete wavelet transform (DWT) is used to build the input feature space of the network. Experimental results show that FIR-SOM discovers the pattern of the input image properly and is robust against noise. Segmentation results of breast ultrasound images (BUS) demonstrate that there is a strong correlation between tumor region selected by a physician and the tumor region segmented by our proposed method.