Language detection using multinomial naïve bayes algorithm

Vaghasiya Yashvi, Vora Diya, Nehayadav, Rana Manish
{"title":"Language detection using multinomial naïve bayes algorithm","authors":"Vaghasiya Yashvi, Vora Diya, Nehayadav, Rana Manish","doi":"10.26634/jcom.10.2.19014","DOIUrl":null,"url":null,"abstract":"In this multilingual world, automatic detection of written or spoken language using Language Identification (LID) technology is a boon in the global communication with people using different languages in different countries. For simplicity and for the purpose of this research, the process of automatically identifying the language(s) from a document is thought of as LID. Lot of ongoing research projects are in the field of Natural Language Processing (NLP) that uses LID as a part of NLP. This field exploits several algorithms evolved in the field of computer science, individually or in combination to achieve accuracy in identifying a language. Among the different approaches adopted in LID,NaïveBayes Classification n-gram text processing seems to be promising.This paper proposes the concept for categorising multiple language texts using Naïve Bayesian algorithms using Machine Learning approaches. Using techniques from existing researches, this paper proposes a way to recognize multilingual documents and calculate the relative proportions of these languages.","PeriodicalId":130578,"journal":{"name":"i-manager's Journal on Computer Science","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"i-manager's Journal on Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26634/jcom.10.2.19014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this multilingual world, automatic detection of written or spoken language using Language Identification (LID) technology is a boon in the global communication with people using different languages in different countries. For simplicity and for the purpose of this research, the process of automatically identifying the language(s) from a document is thought of as LID. Lot of ongoing research projects are in the field of Natural Language Processing (NLP) that uses LID as a part of NLP. This field exploits several algorithms evolved in the field of computer science, individually or in combination to achieve accuracy in identifying a language. Among the different approaches adopted in LID,NaïveBayes Classification n-gram text processing seems to be promising.This paper proposes the concept for categorising multiple language texts using Naïve Bayesian algorithms using Machine Learning approaches. Using techniques from existing researches, this paper proposes a way to recognize multilingual documents and calculate the relative proportions of these languages.
语言检测使用多项naïve贝叶斯算法
在这个多语言的世界里,使用语言识别(LID)技术对书面或口头语言进行自动检测是与不同国家使用不同语言的人进行全球交流的福音。为了简单和本研究的目的,从文档中自动识别语言的过程被认为是LID。许多正在进行的研究项目都是在自然语言处理(NLP)领域,使用LID作为NLP的一部分。该领域利用了计算机科学领域发展起来的几种算法,单独或组合起来实现语言识别的准确性。在LID采用的不同方法中,NaïveBayes分类n-gram文本处理似乎很有前途。本文提出了使用Naïve使用机器学习方法的贝叶斯算法对多语言文本进行分类的概念。本文利用已有研究的技术,提出了一种识别多语言文档并计算这些语言的相对比例的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信