Development of workload models for CNC machines from 3 - Phase current consumption using ensemble method

Thanarak Raktham, K. Piromsopa
{"title":"Development of workload models for CNC machines from 3 - Phase current consumption using ensemble method","authors":"Thanarak Raktham, K. Piromsopa","doi":"10.1109/ICSSEM.2011.6081155","DOIUrl":null,"url":null,"abstract":"Increasing in the competivieness of the manufacturing industry, manufacturers have to improve productivity. Data mining is one tool that is widely applied. In injection-mold manufacturing industry, 3-phase electrical usage from CNC milling machine can be used for machinemonitoring. To reduce human error, we applied data mining technique toelectrical usage patterns for identifyingcurrent process running in CNC machines. In this paper, classifiers are created by applying 1)Naive Bayes 2) Bayes Net 3) Neural Network 4) KStar 5) Decision Table and 6) J48(C4.5) to electrical data. Later ensemble methods such as 1) AdaBoostM1, 2) Bagging, 3) Stacking, and 4) Vote are applied to each classier to create more robust models. The models are trained and tested with 10-fold cross validation. Ourpreliminary result shows that bagging ensemble of J48 classifier with no discretization in the preprocessing step gives the best AUC = 0.946.","PeriodicalId":406311,"journal":{"name":"2011 International Conference on System science, Engineering design and Manufacturing informatization","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on System science, Engineering design and Manufacturing informatization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSEM.2011.6081155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing in the competivieness of the manufacturing industry, manufacturers have to improve productivity. Data mining is one tool that is widely applied. In injection-mold manufacturing industry, 3-phase electrical usage from CNC milling machine can be used for machinemonitoring. To reduce human error, we applied data mining technique toelectrical usage patterns for identifyingcurrent process running in CNC machines. In this paper, classifiers are created by applying 1)Naive Bayes 2) Bayes Net 3) Neural Network 4) KStar 5) Decision Table and 6) J48(C4.5) to electrical data. Later ensemble methods such as 1) AdaBoostM1, 2) Bagging, 3) Stacking, and 4) Vote are applied to each classier to create more robust models. The models are trained and tested with 10-fold cross validation. Ourpreliminary result shows that bagging ensemble of J48 classifier with no discretization in the preprocessing step gives the best AUC = 0.946.
用集成方法从三相电流消耗出发建立数控机床工作负荷模型
在制造业竞争力日益增强的情况下,制造商不得不提高生产率。数据挖掘是一种被广泛应用的工具。在注塑模制造行业中,数控铣床的三相电气可用于机器监控。为了减少人为错误,我们将数据挖掘技术应用于电气使用模式,以识别数控机床中运行的电流过程。本文采用1)朴素贝叶斯、2)贝叶斯网络、3)神经网络、4)KStar、5)决策表、6)J48(C4.5)对电数据进行分类。后来的集成方法,如1)AdaBoostM1, 2) Bagging, 3) Stacking和4)Vote应用于每个分类器,以创建更健壮的模型。这些模型经过10倍交叉验证的训练和测试。初步结果表明,预处理过程中不进行离散化处理的J48分类器套袋集合的AUC值为0.946。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信