On safe sequential optimization using posterior sampling

Pratik Kar, V. Sukumaran, S. Sumitra
{"title":"On safe sequential optimization using posterior sampling","authors":"Pratik Kar, V. Sukumaran, S. Sumitra","doi":"10.1109/SPCOM55316.2022.9840822","DOIUrl":null,"url":null,"abstract":"We consider the problem of designing posterior sampling based sequential optimization policies for maximizing a blackbox function subject to safety constraints. Posterior sampling algorithms, which are easier to implement, have met with empirical success for blackbox maximization problems without safety constraints. We consider whether posterior sampling algorithms which satisfy safety constraints have good performance with respect to achieving the global maxima while minimizing the number of safety constraint violations. We propose a safe Gaussian process Thompson Sampling algorithm for safe maximization of a blackbox function. The algorithm uses a sample estimate of safe set in order to meet safety constraints and uses a mutual information based acquisition function in order to improve the estimate of the safe set. We evaluate the performance of the proposed policy with respect to prior work using simulations. We observe that the proposed policy achieves similar behaviour compared to prior work for safety violations while achieving the global maximum.","PeriodicalId":246982,"journal":{"name":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM55316.2022.9840822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of designing posterior sampling based sequential optimization policies for maximizing a blackbox function subject to safety constraints. Posterior sampling algorithms, which are easier to implement, have met with empirical success for blackbox maximization problems without safety constraints. We consider whether posterior sampling algorithms which satisfy safety constraints have good performance with respect to achieving the global maxima while minimizing the number of safety constraint violations. We propose a safe Gaussian process Thompson Sampling algorithm for safe maximization of a blackbox function. The algorithm uses a sample estimate of safe set in order to meet safety constraints and uses a mutual information based acquisition function in order to improve the estimate of the safe set. We evaluate the performance of the proposed policy with respect to prior work using simulations. We observe that the proposed policy achieves similar behaviour compared to prior work for safety violations while achieving the global maximum.
基于后验抽样的安全序贯优化
我们考虑在安全约束下设计基于后验抽样的最大化黑箱函数的顺序优化策略问题。后验抽样算法更容易实现,在无安全约束的黑箱最大化问题上取得了经验上的成功。我们考虑了满足安全约束的后验抽样算法在达到全局最大值的同时最小化违反安全约束的次数方面是否具有良好的性能。提出了一种安全的高斯过程汤普森采样算法,用于安全最大化黑箱函数。该算法使用安全集的样本估计来满足安全约束,并使用基于互信息的获取函数来改进安全集的估计。我们使用模拟来评估所提出的策略相对于先前工作的性能。我们观察到,与先前的安全违规工作相比,所提出的策略实现了类似的行为,同时实现了全局最大值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信