{"title":"Generative Adversarial Networks for Respiratory Sound Augmentation","authors":"Kirill Kochetov, A. Filchenkov","doi":"10.1145/3437802.3437821","DOIUrl":null,"url":null,"abstract":"In this paper we propose to use generative adversarial network (GAN) for respiratory sound data augmentation. We present a GAN based approach that requires moderate amount of time and computing resources and capable to greatly increase performance of lung sound classification tasks. We also present a conditioned version of GAN, which is flexible and outperforms competitor augmentation methods. As a result, the GAN based augmentation method is able to boost RNN classifier performance by 10-15","PeriodicalId":429866,"journal":{"name":"Proceedings of the 2020 1st International Conference on Control, Robotics and Intelligent System","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 1st International Conference on Control, Robotics and Intelligent System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437802.3437821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper we propose to use generative adversarial network (GAN) for respiratory sound data augmentation. We present a GAN based approach that requires moderate amount of time and computing resources and capable to greatly increase performance of lung sound classification tasks. We also present a conditioned version of GAN, which is flexible and outperforms competitor augmentation methods. As a result, the GAN based augmentation method is able to boost RNN classifier performance by 10-15