Signal Processing of Multi-Mode-Multi-Spatial (MOMS) in Line-of-Sight Channels

Yi Lv, Rui Ni, Qian Zhu, M. Debbah
{"title":"Signal Processing of Multi-Mode-Multi-Spatial (MOMS) in Line-of-Sight Channels","authors":"Yi Lv, Rui Ni, Qian Zhu, M. Debbah","doi":"10.1109/ICCWorkshops50388.2021.9473711","DOIUrl":null,"url":null,"abstract":"Orbital angular momentum (OAM) is a special branch of the traditional multi-input multi-output (MIMO) system, when the antennas sensitive to the linear momentum of the electromagnetic (EM) field are used to detect radio waves carrying OAM. In essence, the special pattern of the OAM wavefront phase distribution information is a special group of orthogonal bases of the EM field in the spatial dimension. The multi-mode multi-spatial (MOMS) scheme discussed in this paper is a generalized closed-loop multi-antenna communication system solution. To adapt more mobile application scenarios, and taking the divergence characteristic of OAM transmission into consideration, we no longer maintain the orthogonality between multiple OAM modes, and use successive interference cancellation (SIC) to obtain the spatial multiplexing gain of OAM. Compared with the traditional MIMO detection schemes, the MOMS scheme is more robust in the sparse multipath channel scenarios, and can obtain most spatial degrees of freedom (DoF) in terms of antenna aperture and channel geometry. Simulation results show that the performance of OAM-MIMO system using MOMS-SIC provides about 0.5 ~ 1.5dB for the system with different supported modes.","PeriodicalId":127186,"journal":{"name":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWorkshops50388.2021.9473711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Orbital angular momentum (OAM) is a special branch of the traditional multi-input multi-output (MIMO) system, when the antennas sensitive to the linear momentum of the electromagnetic (EM) field are used to detect radio waves carrying OAM. In essence, the special pattern of the OAM wavefront phase distribution information is a special group of orthogonal bases of the EM field in the spatial dimension. The multi-mode multi-spatial (MOMS) scheme discussed in this paper is a generalized closed-loop multi-antenna communication system solution. To adapt more mobile application scenarios, and taking the divergence characteristic of OAM transmission into consideration, we no longer maintain the orthogonality between multiple OAM modes, and use successive interference cancellation (SIC) to obtain the spatial multiplexing gain of OAM. Compared with the traditional MIMO detection schemes, the MOMS scheme is more robust in the sparse multipath channel scenarios, and can obtain most spatial degrees of freedom (DoF) in terms of antenna aperture and channel geometry. Simulation results show that the performance of OAM-MIMO system using MOMS-SIC provides about 0.5 ~ 1.5dB for the system with different supported modes.
视距信道中多模多空间(mom)信号处理
轨道角动量(OAM)是传统多输入多输出(MIMO)系统的一个特殊分支,利用对电磁场线性动量敏感的天线来探测携带轨道角动量的无线电波。OAM波前相位分布信息的特殊模式本质上是电磁场在空间维度上的一组特殊正交基。本文讨论的多模多空间(mom)方案是一种广义的闭环多天线通信系统解决方案。为了适应更多的移动应用场景,考虑到OAM传输的发散特性,我们不再保持多个OAM模式之间的正交性,而是使用连续干扰抵消(SIC)来获得OAM的空间复用增益。与传统的MIMO检测方案相比,mom方案在稀疏多径信道场景下具有更强的鲁棒性,并且可以在天线孔径和信道几何形状方面获得最大的空间自由度。仿真结果表明,在支持不同模式的情况下,采用MOMS-SIC的OAM-MIMO系统的性能约为0.5 ~ 1.5dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信