Computer-Aided Grading of Neuroblastic Differentiation: Multi-Resolution and Multi-Classifier Approach

Jun Kong, Olcay Sertel, H. Shimada, K. Boyer, J. Saltz, M. Gürcan
{"title":"Computer-Aided Grading of Neuroblastic Differentiation: Multi-Resolution and Multi-Classifier Approach","authors":"Jun Kong, Olcay Sertel, H. Shimada, K. Boyer, J. Saltz, M. Gürcan","doi":"10.1109/ICIP.2007.4379881","DOIUrl":null,"url":null,"abstract":"In this paper, the development of a computer-aided system for the classification of grade of neuroblastic differentiation is presented. This automated process is carried out within a multi-resolution framework that follows a coarse-to-fine strategy. Additionally, a novel segmentation approach using the Fisher-Rao criterion, embedded in the generic expectation-maximization algorithm, is employed. Multiple decisions from a classifier group are aggregated using a two-step classifier combiner that consists of a majority voting process and a weighted sum rule using priori classifier accuracies. The developed system, when tested on 14,616 image tiles, had the best overall accuracy of 96.89%. Furthermore, multi-resolution scheme combined with automated feature selection process resulted in 34% savings in computational costs on average when compared to a previously developed single-resolution system. Therefore, the performance of this system shows good promise for the computer-aided pathological assessment of the neuroblastic differentiation in clinical practice.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

In this paper, the development of a computer-aided system for the classification of grade of neuroblastic differentiation is presented. This automated process is carried out within a multi-resolution framework that follows a coarse-to-fine strategy. Additionally, a novel segmentation approach using the Fisher-Rao criterion, embedded in the generic expectation-maximization algorithm, is employed. Multiple decisions from a classifier group are aggregated using a two-step classifier combiner that consists of a majority voting process and a weighted sum rule using priori classifier accuracies. The developed system, when tested on 14,616 image tiles, had the best overall accuracy of 96.89%. Furthermore, multi-resolution scheme combined with automated feature selection process resulted in 34% savings in computational costs on average when compared to a previously developed single-resolution system. Therefore, the performance of this system shows good promise for the computer-aided pathological assessment of the neuroblastic differentiation in clinical practice.
神经母细胞分化的计算机辅助分级:多分辨率和多分类方法
本文介绍了一种神经母细胞分化等级的计算机辅助分类系统的开发。这个自动化过程是在遵循从粗到精策略的多分辨率框架内进行的。此外,采用了一种新的分割方法,使用Fisher-Rao准则,嵌入到一般的期望最大化算法中。来自分类器组的多个决策使用两步分类器组合器进行聚合,该组合器由多数投票过程和使用先验分类器准确性的加权和规则组成。该系统在14616张图像上进行了测试,总体准确率达到96.89%。此外,与先前开发的单分辨率系统相比,多分辨率方案结合自动特征选择过程平均节省了34%的计算成本。因此,该系统的性能为临床神经母细胞分化的计算机辅助病理评估提供了良好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信