An Optimal Radius of Influence Domain in Element-Free Galerkin Method

Imane Hajjout, Manal Haddouch, El Mostapha Boudi
{"title":"An Optimal Radius of Influence Domain in Element-Free Galerkin Method","authors":"Imane Hajjout, Manal Haddouch, El Mostapha Boudi","doi":"10.1109/IRSEC.2018.8702280","DOIUrl":null,"url":null,"abstract":"The domain of influence (doi) plays a very important role in the Element Free Galerkin (EFGM) method. It contributes to the calculation of the weight function and so influences the accuracy of the approximation. The radius of the (doi) determines the number of nodes contained in the support. The compromise is that the radius must not be large to not lose the local aspect of the moving least square method (MLS) used in (EFGM) and not small to have enough node so a regular moment matrix. This paper compares several theories for calculating the radius of (doi).","PeriodicalId":186042,"journal":{"name":"2018 6th International Renewable and Sustainable Energy Conference (IRSEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Renewable and Sustainable Energy Conference (IRSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRSEC.2018.8702280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The domain of influence (doi) plays a very important role in the Element Free Galerkin (EFGM) method. It contributes to the calculation of the weight function and so influences the accuracy of the approximation. The radius of the (doi) determines the number of nodes contained in the support. The compromise is that the radius must not be large to not lose the local aspect of the moving least square method (MLS) used in (EFGM) and not small to have enough node so a regular moment matrix. This paper compares several theories for calculating the radius of (doi).
无单元伽辽金法影响域的最优半径
影响域(doi)在无单元伽辽金(EFGM)方法中起着非常重要的作用。它有助于权重函数的计算,从而影响近似的精度。(doi)的半径决定了支持中包含的节点数量。折衷的方法是,半径不能太大,以免失去(EFGM)中使用的移动最小二乘法(MLS)的局部方面,也不能太小,以免有足够的节点,因此一个规则的矩矩阵。本文比较了几种计算doi半径的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信