The Node-Similarity Distribution of Complex Networks and Its Applications in Link Prediction (Extended Abstract)

Cunlai Pu, Jie Li, Jian Wang, Tony Q. S. Quek
{"title":"The Node-Similarity Distribution of Complex Networks and Its Applications in Link Prediction (Extended Abstract)","authors":"Cunlai Pu, Jie Li, Jian Wang, Tony Q. S. Quek","doi":"10.1109/ICDE55515.2023.00376","DOIUrl":null,"url":null,"abstract":"Node-similarity distributions not only characterize different types of complex networks, but also offer insights in the structural predictability of complex networks, and even facilitate prediction tasks in complex networks. By means of the generating function, we propose a framework to calculate the common neighbor based similarity (CNS) distributions, offering theoretical results of similarity distributions of various complex networks. Furthermore, we apply node-similarity distributions to link prediction, a key task in network analysis. Specifically, by deriving analytical solutions for two metrics: i) precision and ii) area under the receiver operating characteristic curve (AUC), we give theoretical evaluation of link prediction. Also, by analyzing i) the expected prediction accuracy of similarity scores and ii) optimal prediction priority of unconnected node pairs, we optimize link prediction with similarity distributions. Simulation results confirm our findings and also validate the proposed methods for evaluating and optimizing link prediction.","PeriodicalId":434744,"journal":{"name":"2023 IEEE 39th International Conference on Data Engineering (ICDE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 39th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE55515.2023.00376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Node-similarity distributions not only characterize different types of complex networks, but also offer insights in the structural predictability of complex networks, and even facilitate prediction tasks in complex networks. By means of the generating function, we propose a framework to calculate the common neighbor based similarity (CNS) distributions, offering theoretical results of similarity distributions of various complex networks. Furthermore, we apply node-similarity distributions to link prediction, a key task in network analysis. Specifically, by deriving analytical solutions for two metrics: i) precision and ii) area under the receiver operating characteristic curve (AUC), we give theoretical evaluation of link prediction. Also, by analyzing i) the expected prediction accuracy of similarity scores and ii) optimal prediction priority of unconnected node pairs, we optimize link prediction with similarity distributions. Simulation results confirm our findings and also validate the proposed methods for evaluating and optimizing link prediction.
复杂网络的节点相似分布及其在链路预测中的应用(扩展摘要)
节点相似分布不仅表征了不同类型的复杂网络,而且为复杂网络的结构可预测性提供了见解,甚至有助于复杂网络中的预测任务。通过生成函数,我们提出了一个计算基于共同邻居的相似度分布的框架,给出了各种复杂网络相似度分布的理论结果。此外,我们将节点相似分布应用于网络分析中的关键任务链路预测。具体而言,通过推导精度和AUC下面积两个指标的解析解,给出了链路预测的理论评价。此外,通过分析i)相似度评分的预期预测精度和ii)未连接节点对的最优预测优先级,我们优化了基于相似度分布的链路预测。仿真结果证实了我们的发现,也验证了所提出的评估和优化链接预测的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信