M. Gopalachari, P. Sammulal
{"title":"Meta Data based Conceptualization and Temporal Semantics in Hybrid Recommender","authors":"M. Gopalachari, P. Sammulal","doi":"10.4018/IJRSDA.2017100104","DOIUrl":null,"url":null,"abstract":"Modernrecommendersystemstarget thesatisfactionof theenduser throughthepersonalization techniquesthatcollectsthehistoryoftheuser’snavigation.Butthesoledependencyontheuserprofile bymeansofnavigationhistoryalonecannotpromisethequalityofrecommendationsbecauseofthe lackofsemantics.Thoughtheliteratureprovidesmanytechniquestoconceptualizetheprocessthey leadtohighcomputationalcomplexityduetoconsideringthecontentdataasinputinformation.In thispaperahybridrecommenderframeworkisdevelopedthatconsidersMetadatabasedconceptual semantics and the temporal patterns on top of the usage history. This framework also includes anonlineprocessthat identifiestheconceptualdriftof theusagedynamically.Theexperimental resultsshowntheeffectivenessoftheproposedframeworkwhencomparedtotheexistingmodern recommendersalsoindicatethattheproposedmodelcanresolveacoldstartproblemyetaccurate suggestionsreducingcomputationalcomplexity. KeywoRDS Collaborative Filtering, Concept Drift, Domain Ontology, Recommendation System, Sequential Patterns, Temporal Semantics, Web Usage Mining","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRSDA.2017100104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
混合推荐中基于元数据的概念化和时间语义
Modernrecommendersystemstarget thesatisfactionof theenduser throughthepersonalization techniquesthatcollectsthehistoryoftheuser 'snavigation。Butthesoledependencyontheuserprofile bymeansofnavigationhistoryalonecannotpromisethequalityofrecommendationsbecauseofthe lackofsemantics。Thoughtheliteratureprovidesmanytechniquestoconceptualizetheprocessthey leadtohighcomputationalcomplexityduetoconsideringthecontentdataasinputinformation。In thispaperahybridrecommenderframeworkisdevelopedthatconsidersMetadatabasedconceptual语义和时间模式在使用历史的顶部。这个框架还包括anonlineprocessthat identifiestheconceptualdriftof theusagedynamically。Theexperimental resultsshowntheeffectivenessoftheproposedframeworkwhencomparedtotheexistingmodern recommendersalsoindicatethattheproposedmodelcanresolveacoldstartproblemyetaccurate suggestionsreducingcomputationalcomplexity。关键词协同过滤,概念漂移,领域本体,推荐系统,顺序模式,时间语义,Web使用挖掘
本文章由计算机程序翻译,如有差异,请以英文原文为准。