Meta Data based Conceptualization and Temporal Semantics in Hybrid Recommender

M. Gopalachari, P. Sammulal
{"title":"Meta Data based Conceptualization and Temporal Semantics in Hybrid Recommender","authors":"M. Gopalachari, P. Sammulal","doi":"10.4018/IJRSDA.2017100104","DOIUrl":null,"url":null,"abstract":"Modernrecommendersystemstarget thesatisfactionof theenduser throughthepersonalization techniquesthatcollectsthehistoryoftheuser’snavigation.Butthesoledependencyontheuserprofile bymeansofnavigationhistoryalonecannotpromisethequalityofrecommendationsbecauseofthe lackofsemantics.Thoughtheliteratureprovidesmanytechniquestoconceptualizetheprocessthey leadtohighcomputationalcomplexityduetoconsideringthecontentdataasinputinformation.In thispaperahybridrecommenderframeworkisdevelopedthatconsidersMetadatabasedconceptual semantics and the temporal patterns on top of the usage history. This framework also includes anonlineprocessthat identifiestheconceptualdriftof theusagedynamically.Theexperimental resultsshowntheeffectivenessoftheproposedframeworkwhencomparedtotheexistingmodern recommendersalsoindicatethattheproposedmodelcanresolveacoldstartproblemyetaccurate suggestionsreducingcomputationalcomplexity. KeywoRDS Collaborative Filtering, Concept Drift, Domain Ontology, Recommendation System, Sequential Patterns, Temporal Semantics, Web Usage Mining","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRSDA.2017100104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Modernrecommendersystemstarget thesatisfactionof theenduser throughthepersonalization techniquesthatcollectsthehistoryoftheuser’snavigation.Butthesoledependencyontheuserprofile bymeansofnavigationhistoryalonecannotpromisethequalityofrecommendationsbecauseofthe lackofsemantics.Thoughtheliteratureprovidesmanytechniquestoconceptualizetheprocessthey leadtohighcomputationalcomplexityduetoconsideringthecontentdataasinputinformation.In thispaperahybridrecommenderframeworkisdevelopedthatconsidersMetadatabasedconceptual semantics and the temporal patterns on top of the usage history. This framework also includes anonlineprocessthat identifiestheconceptualdriftof theusagedynamically.Theexperimental resultsshowntheeffectivenessoftheproposedframeworkwhencomparedtotheexistingmodern recommendersalsoindicatethattheproposedmodelcanresolveacoldstartproblemyetaccurate suggestionsreducingcomputationalcomplexity. KeywoRDS Collaborative Filtering, Concept Drift, Domain Ontology, Recommendation System, Sequential Patterns, Temporal Semantics, Web Usage Mining
混合推荐中基于元数据的概念化和时间语义
Modernrecommendersystemstarget thesatisfactionof theenduser throughthepersonalization techniquesthatcollectsthehistoryoftheuser 'snavigation。Butthesoledependencyontheuserprofile bymeansofnavigationhistoryalonecannotpromisethequalityofrecommendationsbecauseofthe lackofsemantics。Thoughtheliteratureprovidesmanytechniquestoconceptualizetheprocessthey leadtohighcomputationalcomplexityduetoconsideringthecontentdataasinputinformation。In thispaperahybridrecommenderframeworkisdevelopedthatconsidersMetadatabasedconceptual语义和时间模式在使用历史的顶部。这个框架还包括anonlineprocessthat identifiestheconceptualdriftof theusagedynamically。Theexperimental resultsshowntheeffectivenessoftheproposedframeworkwhencomparedtotheexistingmodern recommendersalsoindicatethattheproposedmodelcanresolveacoldstartproblemyetaccurate suggestionsreducingcomputationalcomplexity。关键词协同过滤,概念漂移,领域本体,推荐系统,顺序模式,时间语义,Web使用挖掘
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信