The CV Makes the Difference – Control Variates for Neural Networks

Joerg Kienitz, S. Acar, Qian Liang, N. Nowaczyk
{"title":"The CV Makes the Difference – Control Variates for Neural Networks","authors":"Joerg Kienitz, S. Acar, Qian Liang, N. Nowaczyk","doi":"10.2139/ssrn.3527314","DOIUrl":null,"url":null,"abstract":"We consider the application of a control variate technique for Deep Learning. In analogy to applications for Monte Carlo simulation or Fourier integration methods, this technique improves the quality of deep learning applied to option pricing problems. Many well known approximation methods are limited for practical applications but can be used as a control variate. For instance approximation formulas for SABR or the Black-Scholes price when pricing options in the Heston model. The neural network is only applied to calculate the difference to an accurate numerical method. In this way we increase the accuracy of applying neural nets since a large portion of the price is already mimicked by the control variate. This may result in a higher acceptance of such numerical techniques for financial applications.","PeriodicalId":363330,"journal":{"name":"Computation Theory eJournal","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation Theory eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3527314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the application of a control variate technique for Deep Learning. In analogy to applications for Monte Carlo simulation or Fourier integration methods, this technique improves the quality of deep learning applied to option pricing problems. Many well known approximation methods are limited for practical applications but can be used as a control variate. For instance approximation formulas for SABR or the Black-Scholes price when pricing options in the Heston model. The neural network is only applied to calculate the difference to an accurate numerical method. In this way we increase the accuracy of applying neural nets since a large portion of the price is already mimicked by the control variate. This may result in a higher acceptance of such numerical techniques for financial applications.
CV产生差异——神经网络的控制变量
我们考虑了控制变量技术在深度学习中的应用。类似于蒙特卡罗模拟或傅立叶积分方法的应用,该技术提高了深度学习应用于期权定价问题的质量。许多众所周知的近似方法在实际应用中是有限的,但可以用作控制变量。例如,在赫斯顿模型中为期权定价时,SABR或Black-Scholes价格的近似公式。神经网络只应用于计算差值,以达到精确的数值方法。通过这种方式,我们提高了应用神经网络的准确性,因为大部分价格已经被控制变量模仿了。这可能会导致更高的接受这种数字技术的金融应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信