The Impact of Alternative Imputation Methods on the Measurement of Income and Wealth: Evidence from the Spanish Survey of Household Finances

Cristina Barceló
{"title":"The Impact of Alternative Imputation Methods on the Measurement of Income and Wealth: Evidence from the Spanish Survey of Household Finances","authors":"Cristina Barceló","doi":"10.2139/ssrn.1321827","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to emphasise the importance of the way of handling missing data and its impact on the outcome of empirical studies. Using the 2002 wave of the Spanish Survey of Household Finances (EFF), I study the performance of alternative methods: listwise deletion, non-stochastic, multiple and single imputation based on linear-regression models, and hot-deck procedures. Using descriptive statistics of the marginal and conditional distributions of income and wealth and estimating mean and quantile regressions, listwise deletion brings imprecise and biased estimates, non-stochastic imputation underestimates variance and dispersion and hot deck fails to capture the potential relationships among survey variables.","PeriodicalId":201603,"journal":{"name":"Organizations & Markets eJournal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organizations & Markets eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1321827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

Abstract

The goal of this paper is to emphasise the importance of the way of handling missing data and its impact on the outcome of empirical studies. Using the 2002 wave of the Spanish Survey of Household Finances (EFF), I study the performance of alternative methods: listwise deletion, non-stochastic, multiple and single imputation based on linear-regression models, and hot-deck procedures. Using descriptive statistics of the marginal and conditional distributions of income and wealth and estimating mean and quantile regressions, listwise deletion brings imprecise and biased estimates, non-stochastic imputation underestimates variance and dispersion and hot deck fails to capture the potential relationships among survey variables.
不同的归算方法对收入和财富计量的影响:来自西班牙家庭财务调查的证据
本文的目的是强调处理缺失数据的方式及其对实证研究结果的影响的重要性。利用2002年西班牙家庭财务调查(EFF)的数据,我研究了替代方法的性能:列表删除,非随机,基于线性回归模型的多重和单一imputation,以及热甲板程序。使用收入和财富的边际分布和条件分布的描述性统计以及估计均值和分位数回归,列表删除带来不精确和有偏差的估计,非随机imputation低估了方差和离散度,hot deck无法捕捉调查变量之间的潜在关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信