{"title":"Retinal Blood Vessel Extraction Using a New Enhancement Technique of Modified Convolution Filters and Sauvola Thresholding","authors":"Hadrians Kesuma Putra, B. Suprihatin","doi":"10.1142/s0219467823500067","DOIUrl":null,"url":null,"abstract":"The retinal blood vessels in humans are major components with different shapes and sizes. The extraction of the blood vessels from the retina is an important step to identify the type or nature of the pattern of the diseases in the retina. Furthermore, the retinal blood vessel was also used for diagnosis, detection, and classification. The most recent solution in this topic is to enable retinal image improvement or enhancement by a convolution filter and Sauvola threshold. In image enhancement, gamma correction is applied before filtering the retinal fundus. After that, the image should be transformed to a gray channel to enhance pictorial clarity using contrast-limited histogram equalization. For filter, this paper combines two convolution filters, namely sharpen and smooth filters. The Sauvola threshold, the morphology, and the medium filter are applied to extract blood vessels from the retinal image. This paper uses DRIVE and STARE datasets. The accuracies of the proposed method are 95.37% for DRIVE with a runtime of 1.77[Formula: see text]s and 95.17% for STARE with 2.05[Formula: see text]s runtime. Based on the result, it concludes that the proposed method is good enough to achieve average calculation parameters of a low time quality, quick, and significant.","PeriodicalId":177479,"journal":{"name":"Int. J. Image Graph.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Image Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467823500067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The retinal blood vessels in humans are major components with different shapes and sizes. The extraction of the blood vessels from the retina is an important step to identify the type or nature of the pattern of the diseases in the retina. Furthermore, the retinal blood vessel was also used for diagnosis, detection, and classification. The most recent solution in this topic is to enable retinal image improvement or enhancement by a convolution filter and Sauvola threshold. In image enhancement, gamma correction is applied before filtering the retinal fundus. After that, the image should be transformed to a gray channel to enhance pictorial clarity using contrast-limited histogram equalization. For filter, this paper combines two convolution filters, namely sharpen and smooth filters. The Sauvola threshold, the morphology, and the medium filter are applied to extract blood vessels from the retinal image. This paper uses DRIVE and STARE datasets. The accuracies of the proposed method are 95.37% for DRIVE with a runtime of 1.77[Formula: see text]s and 95.17% for STARE with 2.05[Formula: see text]s runtime. Based on the result, it concludes that the proposed method is good enough to achieve average calculation parameters of a low time quality, quick, and significant.