Evaluation of Various Numerical Methods for Blade Row Interaction in Turbomachinery

Yangwei Liu, Xiaosong Yong, Yumeng Tang
{"title":"Evaluation of Various Numerical Methods for Blade Row Interaction in Turbomachinery","authors":"Yangwei Liu, Xiaosong Yong, Yumeng Tang","doi":"10.1115/gt2022-84388","DOIUrl":null,"url":null,"abstract":"\n The flow within turbomachinery is inherently unsteady, thereby the unsteady rotor-stator interaction usually has a large effect on the performance of multistage turbomachines. However, fully unsteady simulations are still too time-consuming for in the routine design of turbomachinery, thus, the steady simulation with mixing-plane method that neglects the interaction is still widely used. Some reduced-order unsteady methods, such as harmonic balance (HB) method and space-time gradient (STG) method, have been proposed to simulate the unsteady periodic flow for the purpose of reducing CPU time consumption with sufficient accuracy. In this work, four mixing-plane methods, the HB method, and the STG method are implemented into the open source CFL3D solver. Effect of these methods on predicting unsteady rotor-stator interaction are evaluated in two flow cases, including a quasi-three-dimensional radial slice of a turbine stage and a 1.5-stage high-speed axial compressor. Results show that both the high-order HB and STG methods own the similar ability as the conventional unsteady simulation in predicting the wake transmitting from upstream to downstream, while the steady mixing-plane methods fail. Numerical results of the 1.5 stage compressor show that the wake of the first row can reach the third blade row. And this phenomenon can be also clearly captured by HB and STG methods. Fourier analysis method is used to analyze the interaction in different blade rows to evaluate various numerical methods.","PeriodicalId":191970,"journal":{"name":"Volume 10C: Turbomachinery — Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10C: Turbomachinery — Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2022-84388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The flow within turbomachinery is inherently unsteady, thereby the unsteady rotor-stator interaction usually has a large effect on the performance of multistage turbomachines. However, fully unsteady simulations are still too time-consuming for in the routine design of turbomachinery, thus, the steady simulation with mixing-plane method that neglects the interaction is still widely used. Some reduced-order unsteady methods, such as harmonic balance (HB) method and space-time gradient (STG) method, have been proposed to simulate the unsteady periodic flow for the purpose of reducing CPU time consumption with sufficient accuracy. In this work, four mixing-plane methods, the HB method, and the STG method are implemented into the open source CFL3D solver. Effect of these methods on predicting unsteady rotor-stator interaction are evaluated in two flow cases, including a quasi-three-dimensional radial slice of a turbine stage and a 1.5-stage high-speed axial compressor. Results show that both the high-order HB and STG methods own the similar ability as the conventional unsteady simulation in predicting the wake transmitting from upstream to downstream, while the steady mixing-plane methods fail. Numerical results of the 1.5 stage compressor show that the wake of the first row can reach the third blade row. And this phenomenon can be also clearly captured by HB and STG methods. Fourier analysis method is used to analyze the interaction in different blade rows to evaluate various numerical methods.
叶轮机械叶片排相互作用各种数值方法的评价
涡轮机械内部的流动具有固有的非定常性,因此,转子-定子非定常性相互作用对多级涡轮机械的性能影响很大。然而,在涡轮机械的常规设计中,完全非定常模拟仍然过于耗时,因此,忽略相互作用的混合平面法的定常模拟仍然被广泛使用。为了在足够的精度下降低CPU时间消耗,提出了谐波平衡法(HB)和时空梯度法(STG)等降阶非定常方法来模拟非定常周期流。本文在开源的CFL3D求解器中实现了四种混合平面方法、HB方法和STG方法。在涡轮级准三维径向片和1.5级高速轴流压气机两种流动情况下,评估了这些方法对非定常动静相互作用的预测效果。结果表明,高阶HB方法和STG方法在预测尾迹从上游向下游传递方面都具有与传统非定常模拟相似的能力,而定常混合平面方法的预测能力较差。1.5级压气机的数值计算结果表明,第一排的尾迹可以到达第三排叶片。HB和STG方法也可以清楚地捕捉到这种现象。采用傅立叶分析方法对不同叶片排间的相互作用进行了分析,对各种数值方法进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信