Image Representation using Bag of Perceptual Curve Features

Elham Etemad, Q. Gao
{"title":"Image Representation using Bag of Perceptual Curve Features","authors":"Elham Etemad, Q. Gao","doi":"10.1109/DICTA.2018.8615816","DOIUrl":null,"url":null,"abstract":"There are many applications such as augmented or mixed reality with limited training data and computing power which results in inapplicability of convolutional neural networks in those domains. In this method, we have extracted the perceptual edge map of the image and grouped its perceptual structure-based edge elements according to gestalt psychology. The connecting points of these groups, called curve partitioning points (CPPs), are descriptive areas of the image and are utilized for image representation. In this method, the global perceptual image features, and local image representation methods are combined to encode the image according to the generated bag of CPPs using the spatial pyramid matching. The experiments on multi-label and single-label datasets show the superiority of the proposed method.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There are many applications such as augmented or mixed reality with limited training data and computing power which results in inapplicability of convolutional neural networks in those domains. In this method, we have extracted the perceptual edge map of the image and grouped its perceptual structure-based edge elements according to gestalt psychology. The connecting points of these groups, called curve partitioning points (CPPs), are descriptive areas of the image and are utilized for image representation. In this method, the global perceptual image features, and local image representation methods are combined to encode the image according to the generated bag of CPPs using the spatial pyramid matching. The experiments on multi-label and single-label datasets show the superiority of the proposed method.
使用感知曲线特征包的图像表示
由于训练数据和计算能力有限,卷积神经网络在增强现实或混合现实等领域的应用并不适用。在该方法中,我们提取了图像的感知边缘图,并根据格式塔心理学对其基于感知结构的边缘元素进行分组。这些组的连接点称为曲线划分点(CPPs),是图像的描述区域,用于图像表示。该方法结合全局感知图像特征和局部图像表示方法,利用空间金字塔匹配的方法,根据生成的CPPs包对图像进行编码。在多标签和单标签数据集上的实验表明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信