High precision rule based PPI extraction and per-pair basis performance evaluation

Junkyu Lee, Seongsoon Kim, Sunwon Lee, Kyubum Lee, Jaewoo Kang
{"title":"High precision rule based PPI extraction and per-pair basis performance evaluation","authors":"Junkyu Lee, Seongsoon Kim, Sunwon Lee, Kyubum Lee, Jaewoo Kang","doi":"10.1145/2390068.2390082","DOIUrl":null,"url":null,"abstract":"Virtually all current PPI extraction studies focus on improving F-score, aiming to balance the performance on both precision and recall. However, in many realistic scenarios involving large corpora, one can benefit more from an extremely high precision PPI extraction tool than a high-recall counterpart. We also argue that the current \"per-instance\" basis performance evaluation method should be revisited. In order to address these problems, we introduce a new rule-based PPI extraction method equipped with a set of ultra-high precision extraction rules. We also propose a new \"per-pair\" basis performance metric, which is more pragmatic in practice. The proposed PPI extraction method achieves 95-96% per-pair and 94-97% per-instance precisions on the AIMed benchmark corpus.","PeriodicalId":143937,"journal":{"name":"Data and Text Mining in Bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data and Text Mining in Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2390068.2390082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Virtually all current PPI extraction studies focus on improving F-score, aiming to balance the performance on both precision and recall. However, in many realistic scenarios involving large corpora, one can benefit more from an extremely high precision PPI extraction tool than a high-recall counterpart. We also argue that the current "per-instance" basis performance evaluation method should be revisited. In order to address these problems, we introduce a new rule-based PPI extraction method equipped with a set of ultra-high precision extraction rules. We also propose a new "per-pair" basis performance metric, which is more pragmatic in practice. The proposed PPI extraction method achieves 95-96% per-pair and 94-97% per-instance precisions on the AIMed benchmark corpus.
基于高精度规则的PPI提取和基于对的性能评价
目前几乎所有的PPI提取研究都集中在提高f分上,旨在平衡准确率和召回率的表现。然而,在许多涉及大型语料库的现实场景中,与高召回率的对应工具相比,极高精度的PPI提取工具可以带来更多好处。我们还认为,当前的“每个实例”的基础性能评估方法应该重新审视。为了解决这些问题,我们引入了一种新的基于规则的PPI提取方法,该方法配备了一套超高精度的提取规则。我们还提出了一个新的“每对”基础性能度量,它在实践中更加实用。所提出的PPI提取方法在aims基准语料上的每对提取精度为95-96%,每实例提取精度为94-97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信