{"title":"Comparative Performance Evaluation of Multiport DC/AC Inverters for Distributed Generation Applications","authors":"I. Roditis, E. Koutroulis","doi":"10.1109/MOCAST52088.2021.9493345","DOIUrl":null,"url":null,"abstract":"Nowadays, renewable energy sources (RES) in combination with power systems having the capability of storing electric energy are increasingly used in distributed generation applications. Multiport DC/AC inverters are required for the integration of RESs and energy storage systems with the electric grid and local loads. Recently, a variety of multiport DC/AC inverter topologies have been reported in the literature. In this paper, a comparative study of various alternative non-isolated DC/AC three-port converter (TPC) topologies is performed, when they are used as the power electronic interface between photovoltaic arrays, battery energy storage units and the electric grid/load. This study focuses on the performance of these topologies in terms of the leakage ground current and the battery ripple current during charging and discharging in distributed generation systems. A comparative performance evaluation of the alternative multiport DC/AC inverter topologies has been performed in Matlab/Simulink for the case of a 2 kW distributed energy system and the simulation results are presented.","PeriodicalId":146990,"journal":{"name":"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOCAST52088.2021.9493345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, renewable energy sources (RES) in combination with power systems having the capability of storing electric energy are increasingly used in distributed generation applications. Multiport DC/AC inverters are required for the integration of RESs and energy storage systems with the electric grid and local loads. Recently, a variety of multiport DC/AC inverter topologies have been reported in the literature. In this paper, a comparative study of various alternative non-isolated DC/AC three-port converter (TPC) topologies is performed, when they are used as the power electronic interface between photovoltaic arrays, battery energy storage units and the electric grid/load. This study focuses on the performance of these topologies in terms of the leakage ground current and the battery ripple current during charging and discharging in distributed generation systems. A comparative performance evaluation of the alternative multiport DC/AC inverter topologies has been performed in Matlab/Simulink for the case of a 2 kW distributed energy system and the simulation results are presented.