Comparative Analysis of Weighted Emphirical Optimization Algorithm and Lazy Classification Algorithms

P. Suganya, C. Sumathi
{"title":"Comparative Analysis of Weighted Emphirical Optimization Algorithm and Lazy Classification Algorithms","authors":"P. Suganya, C. Sumathi","doi":"10.20894/IJDMTA.102.005.002.006","DOIUrl":null,"url":null,"abstract":"Health care has millions of centric data to discover the essential data is more important. In data mining the discovery of hidden information can be more innovative and useful for much necessity constraint in the field of forecasting, patient’s behavior, executive information system, e-governance the data mining tools and technique play a vital role. In Parkinson health care domain the hidden concept predicts the possibility of likelihood of the disease and also ensures the important feature attribute. The explicit patterns are converted to implicit by applying various algorithms i.e., association, clustering, classification to arrive at the full potential of the medical data. In this research work Parkinson dataset have been used with different classifiers to estimate the accuracy, sensitivity, specificity, kappa and roc characteristics.","PeriodicalId":414709,"journal":{"name":"International Journal of Data Mining Techniques and Applications","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20894/IJDMTA.102.005.002.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Health care has millions of centric data to discover the essential data is more important. In data mining the discovery of hidden information can be more innovative and useful for much necessity constraint in the field of forecasting, patient’s behavior, executive information system, e-governance the data mining tools and technique play a vital role. In Parkinson health care domain the hidden concept predicts the possibility of likelihood of the disease and also ensures the important feature attribute. The explicit patterns are converted to implicit by applying various algorithms i.e., association, clustering, classification to arrive at the full potential of the medical data. In this research work Parkinson dataset have been used with different classifiers to estimate the accuracy, sensitivity, specificity, kappa and roc characteristics.
加权经验优化算法与惰性分类算法的比较分析
医疗保健拥有数以百万计的中心数据,发现基本数据更为重要。在数据挖掘中,隐藏信息的发现对于预测、患者行为、行政信息系统、电子政务等领域的许多必要约束具有创新性和实用性,数据挖掘工具和技术起着至关重要的作用。在帕金森保健领域,隐含概念预测疾病发生可能性的同时,也保证了重要的特征属性。通过应用各种算法,即关联、聚类、分类,将显式模式转换为隐式模式,以充分发挥医疗数据的潜力。在本研究中,我们将帕金森数据集与不同的分类器一起用于估计准确率、灵敏度、特异性、kappa和roc特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信