A novel genetic algorithm for the automated design of performance driven digital circuits

B. Hounsell, T. Arslan
{"title":"A novel genetic algorithm for the automated design of performance driven digital circuits","authors":"B. Hounsell, T. Arslan","doi":"10.1109/CEC.2000.870353","DOIUrl":null,"url":null,"abstract":"Presents a genetic algorithm for the design of high-performance arithmetic circuits for evolvable hardware applications. A distinct feature of the algorithm is its ability to directly evolve and evaluate circuits in a hardware description language (HDL), within a novel environment termed the Virtual Chip. Because the Virtual Chip evolves circuit structures within a HDL, detailed simulation and analysis of each circuit is possible with any technology-specific component library. This feature allows accurate analysis of performance issues such as timing and area. The paper describes the genetic algorithm and the hardware evaluation environment, and provides results with a number of benchmark arithmetic circuits evolved under different performance-driven timing and area constraints. Our results reveal that the genetic algorithm is able to exploit the flexibility provided by a novel chromosome architecture, and utilise a combination of primitive gates and macro components from a component library in order to produce circuits which operate well within timing restrictions. The validity of our results are further supported by comparing the performance of functionally equivalent circuits generated using standard high-level design methodologies.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"2001 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Presents a genetic algorithm for the design of high-performance arithmetic circuits for evolvable hardware applications. A distinct feature of the algorithm is its ability to directly evolve and evaluate circuits in a hardware description language (HDL), within a novel environment termed the Virtual Chip. Because the Virtual Chip evolves circuit structures within a HDL, detailed simulation and analysis of each circuit is possible with any technology-specific component library. This feature allows accurate analysis of performance issues such as timing and area. The paper describes the genetic algorithm and the hardware evaluation environment, and provides results with a number of benchmark arithmetic circuits evolved under different performance-driven timing and area constraints. Our results reveal that the genetic algorithm is able to exploit the flexibility provided by a novel chromosome architecture, and utilise a combination of primitive gates and macro components from a component library in order to produce circuits which operate well within timing restrictions. The validity of our results are further supported by comparing the performance of functionally equivalent circuits generated using standard high-level design methodologies.
一种用于性能驱动数字电路自动设计的新型遗传算法
提出了一种遗传算法,用于设计可进化硬件应用的高性能算术电路。该算法的一个显著特点是它能够在称为虚拟芯片的新环境中直接进化和评估硬件描述语言(HDL)中的电路。由于虚拟芯片在HDL中发展电路结构,因此可以使用任何特定技术的组件库对每个电路进行详细的模拟和分析。该功能允许对性能问题(如时间和面积)进行准确的分析。本文描述了遗传算法和硬件评估环境,并给出了在不同性能驱动的时序和面积约束下进化的一些基准算法电路的结果。我们的研究结果表明,遗传算法能够利用新的染色体结构提供的灵活性,并利用原始门和组件库中的宏组件的组合,以产生在时间限制内运行良好的电路。通过比较使用标准高级设计方法生成的功能等效电路的性能,进一步支持了我们结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信