{"title":"Identification of COVID-19 X-ray Images using CNN with Optimized Tuning of Transfer Learning","authors":"Grega Vrbancic, Špela Pečnik, V. Podgorelec","doi":"10.1109/INISTA49547.2020.9194615","DOIUrl":null,"url":null,"abstract":"At this early stage in the COVID-19 epidemic, researchers are looking for all possible insights into the new corona virus SARS-CoV-2. One of the possibilities is an in-depth analysis of X-ray images from COVID-19 patients. We first developed a new adapted classification method that is able to identify COVID-19 patients based on a chest X-ray, and then adopted a local interpretable model-agnostic explanations approach to provide the insights. The classification method uses a grey wolf optimizer algorithm for the purpose of optimizing hyper-parameter values within the transfer learning tuning of a CNN. The trained model is then used to classify a set of X-ray images, upon which the qualitative explanations are performed. The presented approach was tested on a dataset of 842 X-ray images, with the overall accuracy of 94.76%, outperforming both conventional CNN method as well as the compared baseline transfer learning method. The achieved high classification accuracy enabled us to perform a qualitative in-depth analysis, which revealed that there are some regions of greater importance when identifying COVID-19 cases, like aortic arch or carina and right main bronchus. The proposed classification method proved to be very competitive, enabling one to perform an in-depth analysis, necessary to gain qualitative insights into the characteristics of COVID-19 disease.","PeriodicalId":124632,"journal":{"name":"2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA)","volume":"215 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA49547.2020.9194615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
At this early stage in the COVID-19 epidemic, researchers are looking for all possible insights into the new corona virus SARS-CoV-2. One of the possibilities is an in-depth analysis of X-ray images from COVID-19 patients. We first developed a new adapted classification method that is able to identify COVID-19 patients based on a chest X-ray, and then adopted a local interpretable model-agnostic explanations approach to provide the insights. The classification method uses a grey wolf optimizer algorithm for the purpose of optimizing hyper-parameter values within the transfer learning tuning of a CNN. The trained model is then used to classify a set of X-ray images, upon which the qualitative explanations are performed. The presented approach was tested on a dataset of 842 X-ray images, with the overall accuracy of 94.76%, outperforming both conventional CNN method as well as the compared baseline transfer learning method. The achieved high classification accuracy enabled us to perform a qualitative in-depth analysis, which revealed that there are some regions of greater importance when identifying COVID-19 cases, like aortic arch or carina and right main bronchus. The proposed classification method proved to be very competitive, enabling one to perform an in-depth analysis, necessary to gain qualitative insights into the characteristics of COVID-19 disease.