Risk Perception and Epidemics in Complex Computer Networks

F. Bagnoli, E. Bellini, Emanuele Massaro
{"title":"Risk Perception and Epidemics in Complex Computer Networks","authors":"F. Bagnoli, E. Bellini, Emanuele Massaro","doi":"10.1109/CompEng.2018.8536247","DOIUrl":null,"url":null,"abstract":"We present a self-organised method for quickly obtaining the epidemic threshold of infective processes on networks. Starting from simple percolation models, we introduce the possibility that the effective infection probability is affected by the perception of the risk of being infected, given by the fraction of infected neighbours. We then extend the model to multiplex networks considering that agents (computer) can be infected by contacts on the physical network, while the information about the infection level may come from a partially different network. Finally, we consider more complex infection processes, with nonlinear interactions among agents.","PeriodicalId":194279,"journal":{"name":"2018 IEEE Workshop on Complexity in Engineering (COMPENG)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Workshop on Complexity in Engineering (COMPENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CompEng.2018.8536247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We present a self-organised method for quickly obtaining the epidemic threshold of infective processes on networks. Starting from simple percolation models, we introduce the possibility that the effective infection probability is affected by the perception of the risk of being infected, given by the fraction of infected neighbours. We then extend the model to multiplex networks considering that agents (computer) can be infected by contacts on the physical network, while the information about the infection level may come from a partially different network. Finally, we consider more complex infection processes, with nonlinear interactions among agents.
复杂计算机网络中的风险感知和流行病
我们提出了一种自组织方法,用于快速获得网络上感染过程的流行阈值。从简单的渗透模型开始,我们引入了有效感染概率受受感染风险感知影响的可能性,由受感染邻居的比例给出。考虑到agent(计算机)可以被物理网络上的联系人感染,而有关感染水平的信息可能来自部分不同的网络,我们将模型扩展到多路网络。最后,我们考虑了更复杂的感染过程,agent之间具有非线性相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信