Boosting LDA with Regularization on MPCA Features for Gait Recognition

Haiping Lu, K. Plataniotis, A. Venetsanopoulos
{"title":"Boosting LDA with Regularization on MPCA Features for Gait Recognition","authors":"Haiping Lu, K. Plataniotis, A. Venetsanopoulos","doi":"10.1109/BCC.2007.4430542","DOIUrl":null,"url":null,"abstract":"In this paper, we present a boosted linear discriminant analysis (LDA) solution with regularization on features extracted by the multilinear principal component analysis (MPCA) for the gait recognition problem. This work is an extension of a recent LDA-based boosting approach and the MPCA is employed to project tensorial gait samples on a number of discriminative EigenTensorGaits (ETGs) to produce gait feature vectors for the base learners in boosting. This new scheme offers one more way to control the learner weakness while being very computationally efficient. Furthermore, the LDA learners are modified through regularization for protection against overfitting on the gallery set. Promising experimental results obtained on the Gait Challenge data sets indicate that the proposed algorithm is an efficient and effective solution consistently enhancing the gait recognition results on the seven probe sets by MPCA+LDA.","PeriodicalId":389417,"journal":{"name":"2007 Biometrics Symposium","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Biometrics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCC.2007.4430542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In this paper, we present a boosted linear discriminant analysis (LDA) solution with regularization on features extracted by the multilinear principal component analysis (MPCA) for the gait recognition problem. This work is an extension of a recent LDA-based boosting approach and the MPCA is employed to project tensorial gait samples on a number of discriminative EigenTensorGaits (ETGs) to produce gait feature vectors for the base learners in boosting. This new scheme offers one more way to control the learner weakness while being very computationally efficient. Furthermore, the LDA learners are modified through regularization for protection against overfitting on the gallery set. Promising experimental results obtained on the Gait Challenge data sets indicate that the proposed algorithm is an efficient and effective solution consistently enhancing the gait recognition results on the seven probe sets by MPCA+LDA.
基于MPCA特征正则化的LDA增强步态识别
针对步态识别问题,提出了一种对多线性主成分分析(MPCA)提取的特征进行正则化的增强线性判别分析(LDA)方法。这项工作是对最近一种基于lda的增强方法的扩展,该方法利用MPCA将张性步态样本投影到许多判别特征点(etg)上,为基础学习器生成增强中的步态特征向量。这种新方案提供了一种控制学习器弱点的方法,同时具有很高的计算效率。此外,通过正则化对LDA学习器进行了修改,以防止库集上的过拟合。在步态挑战数据集上获得的良好实验结果表明,该算法是一种高效有效的解决方案,可以持续增强MPCA+LDA在7个探针集上的步态识别结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信