A Novel Proposed Pooling for Convolutional Neural Network

D. Mansouri, Seif-Eddine Benkabou, Bachir Kaddar, K. Benabdeslem
{"title":"A Novel Proposed Pooling for Convolutional Neural Network","authors":"D. Mansouri, Seif-Eddine Benkabou, Bachir Kaddar, K. Benabdeslem","doi":"10.1109/ICTAI.2019.00258","DOIUrl":null,"url":null,"abstract":"In this paper, we aim to improve the performance, time complexity and energy efficiency of deep convolutional neural networks (CNNs) by combining hardware and specialization techniques. Since the pooling step represents a process that contributes significantly to CNNs performance improvement, we propose the Mode-Fisher (MF) pooling method. This form of pooling can potentially offer a very promising results in terms of improving feature extraction performance. The proposed method reduces significantly the data movement in the CNN and save up to 10% of total energy, without any performance penalty.","PeriodicalId":346657,"journal":{"name":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2019.00258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we aim to improve the performance, time complexity and energy efficiency of deep convolutional neural networks (CNNs) by combining hardware and specialization techniques. Since the pooling step represents a process that contributes significantly to CNNs performance improvement, we propose the Mode-Fisher (MF) pooling method. This form of pooling can potentially offer a very promising results in terms of improving feature extraction performance. The proposed method reduces significantly the data movement in the CNN and save up to 10% of total energy, without any performance penalty.
一种新的卷积神经网络池化方法
在本文中,我们旨在通过结合硬件和专门化技术来提高深度卷积神经网络(cnn)的性能、时间复杂度和能量效率。由于池化步骤代表了一个对cnn性能改进有重要贡献的过程,我们提出了模型-费舍尔(MF)池化方法。就提高特征提取性能而言,这种形式的池化可能会提供非常有希望的结果。该方法显著减少了CNN中的数据移动,在没有任何性能损失的情况下节省了高达10%的总能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信