M. Y. Naghmouchi, Shoushou Ren, P. Medagliani, S. Martin, Jérémie Leguay, Huawei Technologies
{"title":"Scalable Damper-based Deterministic Networking","authors":"M. Y. Naghmouchi, Shoushou Ren, P. Medagliani, S. Martin, Jérémie Leguay, Huawei Technologies","doi":"10.23919/CNSM55787.2022.9964638","DOIUrl":null,"url":null,"abstract":"With 5G networking, deterministic guarantees are emerging as a key enabler. In this context, we present a scalable Damper-based architecture for Large-scale Deterministic IP Networks (D-LDN) that meets required bounds on end-to-end delay and jitter. This work extends the original LDN [1] architecture, where flows are shaped at ingress gateways and scheduled for transmission at each link using an asynchronous and cyclic opening of gate-controlled queues. To further relax the need for clock synchronization between devices, we use dampers, that consist in jitter regulators, to control the burstiness flows to provide a constant target delay at each hop. We introduce in details how data plane functionalities are implemented at all nodes (gateways and core) and we derive how the end-to-end delay and jitter are calculated. For the control plane, we propose a column generation algorithm to quickly take admission control decisions and maximize the accepted throughput. For a set of flows, it determines acceptance and selects the best shaping and routing policy. Through a proof-of-concept implementation in simulation, we verify that the architecture meets promised guarantees and that the control plane can operate efficiently at large-scale.","PeriodicalId":232521,"journal":{"name":"2022 18th International Conference on Network and Service Management (CNSM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM55787.2022.9964638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
With 5G networking, deterministic guarantees are emerging as a key enabler. In this context, we present a scalable Damper-based architecture for Large-scale Deterministic IP Networks (D-LDN) that meets required bounds on end-to-end delay and jitter. This work extends the original LDN [1] architecture, where flows are shaped at ingress gateways and scheduled for transmission at each link using an asynchronous and cyclic opening of gate-controlled queues. To further relax the need for clock synchronization between devices, we use dampers, that consist in jitter regulators, to control the burstiness flows to provide a constant target delay at each hop. We introduce in details how data plane functionalities are implemented at all nodes (gateways and core) and we derive how the end-to-end delay and jitter are calculated. For the control plane, we propose a column generation algorithm to quickly take admission control decisions and maximize the accepted throughput. For a set of flows, it determines acceptance and selects the best shaping and routing policy. Through a proof-of-concept implementation in simulation, we verify that the architecture meets promised guarantees and that the control plane can operate efficiently at large-scale.