{"title":"The Unary Arithmetical Algorithm in Bimodular Number Systems","authors":"P. Kurka, M. Delacourt","doi":"10.1109/ARITH.2013.10","DOIUrl":null,"url":null,"abstract":"We analyze the performance of the unary arithmetical algorithm which computes a Moebius transformation in bimodular number systems which extend the binary signed system. We give statistical evidence that in some of these systems, the algorithm has linear average time complexity.","PeriodicalId":211528,"journal":{"name":"2013 IEEE 21st Symposium on Computer Arithmetic","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 21st Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2013.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We analyze the performance of the unary arithmetical algorithm which computes a Moebius transformation in bimodular number systems which extend the binary signed system. We give statistical evidence that in some of these systems, the algorithm has linear average time complexity.