Mining High Utility Itemsets in Data Streams Based on the Weighted Sliding Window Model

P. S. Tsai
{"title":"Mining High Utility Itemsets in Data Streams Based on the Weighted Sliding Window Model","authors":"P. S. Tsai","doi":"10.5121/IJDKP.2014.4202","DOIUrl":null,"url":null,"abstract":"Most of researches on mining high utility itemsets focus on the static transaction database, where all transactions are treated with the same importance and the database can be scanned more than once. With the emergence of new applications, data stream mining has become a significant research topic. In the data stream environment, online data stream mining algorithms are restricted to make only one pass over the data. However, present methods for mining high utility itemsets still cannot meet the requirement. In this paper, we propose a single pass algorithm for high utility itemset mining based on the weighted sliding window model. The developed algorithm takes advantage of reusing stored information to efficiently discover all the high utility itemsets in data streams.","PeriodicalId":131153,"journal":{"name":"International Journal of Data Mining & Knowledge Management Process","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining & Knowledge Management Process","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJDKP.2014.4202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Most of researches on mining high utility itemsets focus on the static transaction database, where all transactions are treated with the same importance and the database can be scanned more than once. With the emergence of new applications, data stream mining has become a significant research topic. In the data stream environment, online data stream mining algorithms are restricted to make only one pass over the data. However, present methods for mining high utility itemsets still cannot meet the requirement. In this paper, we propose a single pass algorithm for high utility itemset mining based on the weighted sliding window model. The developed algorithm takes advantage of reusing stored information to efficiently discover all the high utility itemsets in data streams.
基于加权滑动窗口模型的数据流高实用项集挖掘
高效用项集挖掘的研究大多集中在静态事务数据库中,在静态事务数据库中,所有事务都具有相同的重要性,并且可以对数据库进行多次扫描。随着新应用的出现,数据流挖掘已成为一个重要的研究课题。在数据流环境中,在线数据流挖掘算法被限制只能对数据进行一次传递。然而,现有的高效用项集挖掘方法仍不能满足需求。本文提出了一种基于加权滑动窗口模型的单遍高效用项集挖掘算法。该算法利用存储信息的重用,有效地发现数据流中所有高实用项集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信