Particle Swarm Optimization (PSO) in Engineering Electromagnetics: A Nature-Inspired Evolutionary Algorithm

Y. Rahmat-Sami, N. Jin
{"title":"Particle Swarm Optimization (PSO) in Engineering Electromagnetics: A Nature-Inspired Evolutionary Algorithm","authors":"Y. Rahmat-Sami, N. Jin","doi":"10.1109/ICEAA.2007.4387266","DOIUrl":null,"url":null,"abstract":"This paper presents representative electromagnetic engineering applications of a particle swarm optimization (PSO) engine developed at UCLA antenna lab. The paper provides a conceptual overview of the PSO engine that accommodates real-number, binary, single-objective and multi-objective optimizations, along with five examples illustrated to validate the algorithm's functionality in a large variety of practical problems. Examples include the design of dual/multi-band patch antennas, aperiodic antenna arrays, periodic structures, correlator antenna arrays, etc. In most cases the designs provided by PSO are prototyped, with high-quality performance observed from the measurement results.","PeriodicalId":273595,"journal":{"name":"2007 International Conference on Electromagnetics in Advanced Applications","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Electromagnetics in Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAA.2007.4387266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This paper presents representative electromagnetic engineering applications of a particle swarm optimization (PSO) engine developed at UCLA antenna lab. The paper provides a conceptual overview of the PSO engine that accommodates real-number, binary, single-objective and multi-objective optimizations, along with five examples illustrated to validate the algorithm's functionality in a large variety of practical problems. Examples include the design of dual/multi-band patch antennas, aperiodic antenna arrays, periodic structures, correlator antenna arrays, etc. In most cases the designs provided by PSO are prototyped, with high-quality performance observed from the measurement results.
工程电磁学中的粒子群优化:一种受自然启发的进化算法
本文介绍了加州大学洛杉矶分校天线实验室研制的粒子群优化(PSO)引擎在电磁工程中的典型应用。本文提供了PSO引擎的概念概述,该引擎适用于实数、二进制、单目标和多目标优化,并提供了五个示例来验证该算法在各种实际问题中的功能。例子包括双/多波段贴片天线、非周期天线阵列、周期结构、相关天线阵列等的设计。在大多数情况下,PSO提供的设计都是原型,从测量结果中观察到高质量的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信