Exploring strategies for developing link analysis based question-oriented multi-document summarization models

Sujian Li, Wei Wang, Wenjie Li
{"title":"Exploring strategies for developing link analysis based question-oriented multi-document summarization models","authors":"Sujian Li, Wei Wang, Wenjie Li","doi":"10.1109/ICMLC.2011.6016951","DOIUrl":null,"url":null,"abstract":"Graph ranking algorithms have been successfully used in multi-document summarization. Among them, the basic link analysis model has drawn much attention due to its' mutual reinforcement principle which appears to be sound for the generic summarization task. In this paper, we explore effective strategies for extending the basic link analysis model to question-oriented multi-document summarization. Three kinds of strategies, namely link re-weighting, baseset downsizing and projection, are proposed to introduce question-dependent similarity metric, adjust the node number and refine the ranking process respectively. Experimental results evaluated on the DUC data sets demonstrate that these three strategies can achieve better results.","PeriodicalId":228516,"journal":{"name":"2011 International Conference on Machine Learning and Cybernetics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2011.6016951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Graph ranking algorithms have been successfully used in multi-document summarization. Among them, the basic link analysis model has drawn much attention due to its' mutual reinforcement principle which appears to be sound for the generic summarization task. In this paper, we explore effective strategies for extending the basic link analysis model to question-oriented multi-document summarization. Three kinds of strategies, namely link re-weighting, baseset downsizing and projection, are proposed to introduce question-dependent similarity metric, adjust the node number and refine the ranking process respectively. Experimental results evaluated on the DUC data sets demonstrate that these three strategies can achieve better results.
探索基于链接分析的面向问题的多文档摘要模型的开发策略
图排序算法已成功应用于多文档摘要中。其中,基本环节分析模型因其相互强化原理而备受关注,对于一般的总结任务似乎是合理的。本文探讨了将基本链接分析模型扩展到面向问题的多文档摘要的有效策略。提出了链接重加权、基集缩小和投影三种策略,分别引入问题相关的相似度度量、调整节点数和改进排序过程。在DUC数据集上的实验结果表明,这三种策略都能取得较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信