Ambiguity resolution in sparse linear prediction

H. Ge, D. Tufts, R. Kumaresan
{"title":"Ambiguity resolution in sparse linear prediction","authors":"H. Ge, D. Tufts, R. Kumaresan","doi":"10.1109/ACSSC.1993.342389","DOIUrl":null,"url":null,"abstract":"We present some results of our analysis of Kumaresan's (1982) sparse linear prediction method for estimation of frequencies of sinusoids. Refinements of Kumaresan's method are proposed for the case of two sinusoids which are not close in frequency. When the data is corrupted by additive white Gaussian noise, the probability of correctly resolving ambiguities is used to evaluate the performance. Comparisons between statistical performance analyses and computer simulations demonstrate that the analyses are accurate.<<ETX>>","PeriodicalId":266447,"journal":{"name":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1993.342389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We present some results of our analysis of Kumaresan's (1982) sparse linear prediction method for estimation of frequencies of sinusoids. Refinements of Kumaresan's method are proposed for the case of two sinusoids which are not close in frequency. When the data is corrupted by additive white Gaussian noise, the probability of correctly resolving ambiguities is used to evaluate the performance. Comparisons between statistical performance analyses and computer simulations demonstrate that the analyses are accurate.<>
稀疏线性预测中的模糊度解决
我们提出了一些分析Kumaresan(1982)的稀疏线性预测方法估计正弦波频率的结果。对于两个频率不接近的正弦波,提出了Kumaresan方法的改进。当数据被加性高斯白噪声破坏时,使用正确解决歧义的概率来评估性能。统计性能分析与计算机模拟的比较表明,分析是准确的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信