Network Traffic Analysis for DDOS Attack Detection

Atheer Alharthi, A. Eshmawi, Azzah Kabbas, L. Hsairi
{"title":"Network Traffic Analysis for DDOS Attack Detection","authors":"Atheer Alharthi, A. Eshmawi, Azzah Kabbas, L. Hsairi","doi":"10.1145/3440749.3442637","DOIUrl":null,"url":null,"abstract":"Distributed Denial of Service attacks (DDoS) are one of the most prevalent attacks threatening systems and their security. In this paper, various models to categorize these attacks are presented, analyzed and compared on regards of their effectiveness for DDoS detection. Machine learning (ML) algorithms for classification are used after pre-processing DDoS dataset to classify network traffic. After analyzing the results of Naïve bayes, Decision Tree, Support Vector Machine, and Random Forest classifiers, we conclude that the most accurate results appeared when using the Random Forest classifier.","PeriodicalId":344578,"journal":{"name":"Proceedings of the 4th International Conference on Future Networks and Distributed Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Future Networks and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3440749.3442637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Distributed Denial of Service attacks (DDoS) are one of the most prevalent attacks threatening systems and their security. In this paper, various models to categorize these attacks are presented, analyzed and compared on regards of their effectiveness for DDoS detection. Machine learning (ML) algorithms for classification are used after pre-processing DDoS dataset to classify network traffic. After analyzing the results of Naïve bayes, Decision Tree, Support Vector Machine, and Random Forest classifiers, we conclude that the most accurate results appeared when using the Random Forest classifier.
用于DDOS攻击检测的网络流量分析
分布式拒绝服务攻击(DDoS)是威胁系统及其安全的最常见的攻击之一。本文提出了对这些攻击进行分类的各种模型,并对它们在DDoS检测方面的有效性进行了分析和比较。在对DDoS数据集进行预处理后,使用机器学习(ML)算法对网络流量进行分类。在分析Naïve贝叶斯、决策树、支持向量机和随机森林分类器的结果后,我们得出结论,使用随机森林分类器时出现的结果最准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信