Electrical Appliance Classification using Deep Convolutional Neural Networks on High Frequency Current Measurements

Daniel Jorde, Thomas Kriechbaumer, H. Jacobsen
{"title":"Electrical Appliance Classification using Deep Convolutional Neural Networks on High Frequency Current Measurements","authors":"Daniel Jorde, Thomas Kriechbaumer, H. Jacobsen","doi":"10.1109/SmartGridComm.2018.8587452","DOIUrl":null,"url":null,"abstract":"Monitoring the energy demand of appliances can raise consumer awareness and therefore reduce energy consumption. Using a single-point measurement of mains energy consumption can keep costs and hardware complexity to a minimum. This data stream of raw voltage and current measurements can be used in machine learning tasks to extract information. We apply Deep Convolutional Neural Networks on an electrical appliance classification task, using raw high frequency start up events from two datasets. We further present Data Augmentation techniques to improve the model performance and evaluate different data normalization techniques. We achieve a perfect classification on WHITED and a Fl-Score of 0.69 on PLAID.","PeriodicalId":213523,"journal":{"name":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2018.8587452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Monitoring the energy demand of appliances can raise consumer awareness and therefore reduce energy consumption. Using a single-point measurement of mains energy consumption can keep costs and hardware complexity to a minimum. This data stream of raw voltage and current measurements can be used in machine learning tasks to extract information. We apply Deep Convolutional Neural Networks on an electrical appliance classification task, using raw high frequency start up events from two datasets. We further present Data Augmentation techniques to improve the model performance and evaluate different data normalization techniques. We achieve a perfect classification on WHITED and a Fl-Score of 0.69 on PLAID.
基于深度卷积神经网络的高频电流测量电器分类
监测家电的能源需求可以提高消费者的意识,从而减少能源消耗。使用单点测量电源能耗可以将成本和硬件复杂性降至最低。原始电压和电流测量的数据流可用于机器学习任务以提取信息。我们将深度卷积神经网络应用于电器分类任务,使用来自两个数据集的原始高频启动事件。我们进一步介绍了数据增强技术,以提高模型性能并评估不同的数据规范化技术。我们在whiteed上达到了完美的分类,在PLAID上达到了0.69的Fl-Score。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信