Complex blind source separation: optimal nonlinearity and approximation

Yang Zhang, S. Kassam
{"title":"Complex blind source separation: optimal nonlinearity and approximation","authors":"Yang Zhang, S. Kassam","doi":"10.1109/CISS.2010.5464946","DOIUrl":null,"url":null,"abstract":"This paper discusses the performance of complex blind source separation via the EASI algorithm. In particular, we show that the optimum amplitude nonlinearity used in the algorithm can be derived from the sources' distribution. In addition, this nonlinearity can be further approximated by a piecewise constant quantizer to reduce the complexity of the system. These results are obtained with an approach based on the magnitude-phase representation of complex signals and a circularly symmetric source PDF assumption. However, in the QAM signal separation case where this assumption is not true, the optimum nonlinearity and its approximation derived will still deliver good performances if a good amplitude PDF model is matched to the QAM source distribution.","PeriodicalId":118872,"journal":{"name":"2010 44th Annual Conference on Information Sciences and Systems (CISS)","volume":"05 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 44th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2010.5464946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper discusses the performance of complex blind source separation via the EASI algorithm. In particular, we show that the optimum amplitude nonlinearity used in the algorithm can be derived from the sources' distribution. In addition, this nonlinearity can be further approximated by a piecewise constant quantizer to reduce the complexity of the system. These results are obtained with an approach based on the magnitude-phase representation of complex signals and a circularly symmetric source PDF assumption. However, in the QAM signal separation case where this assumption is not true, the optimum nonlinearity and its approximation derived will still deliver good performances if a good amplitude PDF model is matched to the QAM source distribution.
复杂盲源分离:最优非线性与近似
本文讨论了利用EASI算法进行复杂盲源分离的性能。特别是,我们证明了算法中使用的最优幅度非线性可以从源的分布中导出。此外,这种非线性可以通过分段常数量化器进一步逼近,以降低系统的复杂性。这些结果是通过基于复杂信号的幅度相位表示和圆对称源PDF假设的方法获得的。然而,在此假设不成立的QAM信号分离情况下,如果将良好的幅度PDF模型与QAM源分布相匹配,则最佳非线性及其导出的近似仍然可以提供良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信