{"title":"A novel soft sensor modelling method based on kernel PLS","authors":"Xi Zhang, Weijian Huang, Yaqing Zhu, Shihe Chen","doi":"10.1109/ICICISYS.2010.5658683","DOIUrl":null,"url":null,"abstract":"A novel soft sensor modeling method based on kernel partial least squares (kernel PLS, KPLS) was proposed. Kernel PLS is a promising regression method for tackling nonlinear problems because it can efficiently compute regression coefficients in high-dimensional feature space by means of nonlinear kernel function. Application results to the real data in a fluid catalytic cracking unit (FCCU) process show that the proposed method can effectively capture nonlinear relationship among variables and have better estimation performance than PLS and other linear approaches.","PeriodicalId":339711,"journal":{"name":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2010.5658683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A novel soft sensor modeling method based on kernel partial least squares (kernel PLS, KPLS) was proposed. Kernel PLS is a promising regression method for tackling nonlinear problems because it can efficiently compute regression coefficients in high-dimensional feature space by means of nonlinear kernel function. Application results to the real data in a fluid catalytic cracking unit (FCCU) process show that the proposed method can effectively capture nonlinear relationship among variables and have better estimation performance than PLS and other linear approaches.