A novel soft sensor modelling method based on kernel PLS

Xi Zhang, Weijian Huang, Yaqing Zhu, Shihe Chen
{"title":"A novel soft sensor modelling method based on kernel PLS","authors":"Xi Zhang, Weijian Huang, Yaqing Zhu, Shihe Chen","doi":"10.1109/ICICISYS.2010.5658683","DOIUrl":null,"url":null,"abstract":"A novel soft sensor modeling method based on kernel partial least squares (kernel PLS, KPLS) was proposed. Kernel PLS is a promising regression method for tackling nonlinear problems because it can efficiently compute regression coefficients in high-dimensional feature space by means of nonlinear kernel function. Application results to the real data in a fluid catalytic cracking unit (FCCU) process show that the proposed method can effectively capture nonlinear relationship among variables and have better estimation performance than PLS and other linear approaches.","PeriodicalId":339711,"journal":{"name":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2010.5658683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A novel soft sensor modeling method based on kernel partial least squares (kernel PLS, KPLS) was proposed. Kernel PLS is a promising regression method for tackling nonlinear problems because it can efficiently compute regression coefficients in high-dimensional feature space by means of nonlinear kernel function. Application results to the real data in a fluid catalytic cracking unit (FCCU) process show that the proposed method can effectively capture nonlinear relationship among variables and have better estimation performance than PLS and other linear approaches.
一种新的基于核PLS的软测量建模方法
提出了一种基于核偏最小二乘(kernel PLS, KPLS)的软传感器建模方法。核PLS可以利用非线性核函数在高维特征空间中高效地计算回归系数,是一种很有前途的非线性回归方法。应用结果表明,该方法能有效捕捉变量间的非线性关系,具有比PLS和其他线性方法更好的估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信