An MDL-based change-detection algorithm with its applications to learning piecewise stationary memoryless sources

Hiroki Kanazawa, K. Yamanishi
{"title":"An MDL-based change-detection algorithm with its applications to learning piecewise stationary memoryless sources","authors":"Hiroki Kanazawa, K. Yamanishi","doi":"10.1109/ITW.2012.6404736","DOIUrl":null,"url":null,"abstract":"Kleinberg has proposed an algorithm for detecting bursts from a data sequence, which has turned out to be effective in the scenario of data mining, such as topic detection, change-detection. In this paper we extend Kleinberg's algorithm in an information-theoretic fashion to obtain a new class of algorithms and apply it into learning of piecewise stationary memoryless sources (PSMSs). The keys of the proposed algorithm are; 1) the parameter space is discretized so that discretization scale depends on the Fisher information, and 2) the optimal path over the discretized parameter space is efficiently computed using the dynamic programming method so that the sum of the data and parameter description lengths is minimized on the basis of the MDL principle. We prove that an upper bound on the total code-length for the proposed algorithm asymptotically matches Merhav's lower bound.","PeriodicalId":325771,"journal":{"name":"2012 IEEE Information Theory Workshop","volume":"42 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Information Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2012.6404736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Kleinberg has proposed an algorithm for detecting bursts from a data sequence, which has turned out to be effective in the scenario of data mining, such as topic detection, change-detection. In this paper we extend Kleinberg's algorithm in an information-theoretic fashion to obtain a new class of algorithms and apply it into learning of piecewise stationary memoryless sources (PSMSs). The keys of the proposed algorithm are; 1) the parameter space is discretized so that discretization scale depends on the Fisher information, and 2) the optimal path over the discretized parameter space is efficiently computed using the dynamic programming method so that the sum of the data and parameter description lengths is minimized on the basis of the MDL principle. We prove that an upper bound on the total code-length for the proposed algorithm asymptotically matches Merhav's lower bound.
一种基于mdl的变化检测算法及其在分段平稳无记忆源学习中的应用
Kleinberg提出了一种从数据序列中检测突发的算法,该算法在数据挖掘的场景中非常有效,如主题检测、变化检测等。本文从信息论的角度对Kleinberg算法进行了扩展,得到了一类新的算法,并将其应用于分段平稳无记忆源的学习。该算法的关键字为;1)对参数空间进行离散化,使离散化尺度依赖于Fisher信息;2)根据MDL原理,利用动态规划方法高效地计算离散化参数空间上的最优路径,使数据和参数描述长度之和最小。我们证明了该算法的总码长上界与Merhav下界渐近匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信