{"title":"Ekstraksi Ciri Metode Gray Level Co-Occurrence Matrix Untuk Identifikasi Sel Darah Putih","authors":"Anwar Siswanto, A. Fadlil, A. Yudhana","doi":"10.31328/jointecs.v5i2.1334","DOIUrl":null,"url":null,"abstract":"Dalam tubuh manusia terkandung darah, terdiri dari komponen selular dan non selular, salah satu komponen selular adalah sel darah putih. Darah didistribusikan melalui pembuluh darah dari jantung ke seluruh tubuh. Sistem ini berfungsi untuk memenuhi kebutuhan sel atau jaringan akan nutrien dan oksigen serta mentranspor sisa metabolisme sel atau jaringan keluar dari tubuh. Sel darah putih merupakan salah satu indikator penegakan diagnosa. Identifikasi secara manual membutuhkan waktu yang lama dan cenderung subjektif tergantung dari pengalaman petugas. Penelitian ini bertujuan untuk membantu identifikasi sel darah putih secara otomatis sehingga didapatkan hasil yang cepat dan akurat. Eosinofil, Basofil, Neutrofil, Limfosit dan Monosit adalah sel darah yang diteliti. Penelitian ini menggunakan citra apus darah tepidengan pengecatan menggunakan My Grundwald dan mikroskop kamera okuler digital. Segmentasi citra berdasarkan ruang warna Hue Saturation dan Value (HSV) dan ekstraksi ciri sel darah putih menggunakan metodeGray Level Co-occurrence Matrix (GLCM) yaitu fiturAnguler Second Moment (ASM), Contrast, Inverse Different Moment (IDM), Entropy, Correlation. Pada proses pengujian di hasilkan nilai ekstraksi ciri GLCM dengan pola yang mirip. Dapat digunakan untuk indentifikasi sel darah putih.","PeriodicalId":259537,"journal":{"name":"JOINTECS (Journal of Information Technology and Computer Science)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOINTECS (Journal of Information Technology and Computer Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31328/jointecs.v5i2.1334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Dalam tubuh manusia terkandung darah, terdiri dari komponen selular dan non selular, salah satu komponen selular adalah sel darah putih. Darah didistribusikan melalui pembuluh darah dari jantung ke seluruh tubuh. Sistem ini berfungsi untuk memenuhi kebutuhan sel atau jaringan akan nutrien dan oksigen serta mentranspor sisa metabolisme sel atau jaringan keluar dari tubuh. Sel darah putih merupakan salah satu indikator penegakan diagnosa. Identifikasi secara manual membutuhkan waktu yang lama dan cenderung subjektif tergantung dari pengalaman petugas. Penelitian ini bertujuan untuk membantu identifikasi sel darah putih secara otomatis sehingga didapatkan hasil yang cepat dan akurat. Eosinofil, Basofil, Neutrofil, Limfosit dan Monosit adalah sel darah yang diteliti. Penelitian ini menggunakan citra apus darah tepidengan pengecatan menggunakan My Grundwald dan mikroskop kamera okuler digital. Segmentasi citra berdasarkan ruang warna Hue Saturation dan Value (HSV) dan ekstraksi ciri sel darah putih menggunakan metodeGray Level Co-occurrence Matrix (GLCM) yaitu fiturAnguler Second Moment (ASM), Contrast, Inverse Different Moment (IDM), Entropy, Correlation. Pada proses pengujian di hasilkan nilai ekstraksi ciri GLCM dengan pola yang mirip. Dapat digunakan untuk indentifikasi sel darah putih.