On path-quasar Ramsey numbers

Binlong Li, Bo Ning
{"title":"On path-quasar Ramsey numbers","authors":"Binlong Li, Bo Ning","doi":"10.1515/umcsmath-2015-0002","DOIUrl":null,"url":null,"abstract":"Let \\(G_1\\) and \\(G_2\\) be two given graphs. The Ramsey number \\(R(G_1,G_2)\\) is the least integer \\(r\\) such that for every graph \\(G\\) on \\(r\\) vertices, either \\(G\\) contains a \\(G_1\\) or \\(\\overline{G}\\) contains a \\(G_2\\). Parsons gave a recursive formula to determine the values of \\(R(P_n,K_{1,m})\\), where \\(P_n\\) is a path on \\(n\\) vertices and \\(K_{1,m}\\) is a star on \\(m+1\\) vertices. In this note, we study the Ramsey numbers \\(R(P_n,K_1\\vee F_m)\\), where \\(F_m\\) is a linear forest on \\(m\\) vertices. We determine the exact values of \\(R(P_n,K_1\\vee F_m)\\) for the cases \\(m\\leq n\\) and \\(m\\geq 2n\\), and for the case that \\(F_m\\) has no odd component. Moreover, we give a lower bound and an upper bound for the case \\(n+1\\leq m\\leq 2n-1\\) and \\(F_m\\) has at least one odd component.","PeriodicalId":340819,"journal":{"name":"Annales Umcs, Mathematica","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Umcs, Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/umcsmath-2015-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(G_1\) and \(G_2\) be two given graphs. The Ramsey number \(R(G_1,G_2)\) is the least integer \(r\) such that for every graph \(G\) on \(r\) vertices, either \(G\) contains a \(G_1\) or \(\overline{G}\) contains a \(G_2\). Parsons gave a recursive formula to determine the values of \(R(P_n,K_{1,m})\), where \(P_n\) is a path on \(n\) vertices and \(K_{1,m}\) is a star on \(m+1\) vertices. In this note, we study the Ramsey numbers \(R(P_n,K_1\vee F_m)\), where \(F_m\) is a linear forest on \(m\) vertices. We determine the exact values of \(R(P_n,K_1\vee F_m)\) for the cases \(m\leq n\) and \(m\geq 2n\), and for the case that \(F_m\) has no odd component. Moreover, we give a lower bound and an upper bound for the case \(n+1\leq m\leq 2n-1\) and \(F_m\) has at least one odd component.
关于路径类星体拉姆齐数
设\(G_1\)和\(G_2\)为两个给定的图形。拉姆齐数\(R(G_1,G_2)\)是最小整数\(r\),使得对于\(r\)顶点上的每个图形\(G\), \(G\)包含一个\(G_1\)或\(\overline{G}\)包含一个\(G_2\)。帕森斯给出了一个递归公式来确定\(R(P_n,K_{1,m})\)的值,其中\(P_n\)是\(n\)顶点上的路径,\(K_{1,m}\)是\(m+1\)顶点上的星号。在本文中,我们研究拉姆齐数\(R(P_n,K_1\vee F_m)\),其中\(F_m\)是\(m\)顶点上的线性森林。对于\(m\leq n\)和\(m\geq 2n\)以及\(F_m\)没有奇数组件的情况,我们确定\(R(P_n,K_1\vee F_m)\)的确切值。此外,我们给出了\(n+1\leq m\leq 2n-1\)和\(F_m\)至少有一个奇数分量的情况下的下界和上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信