Exploring Twitter networks in parallel computing environments

Bo Xu, Yun Huang, N. Contractor
{"title":"Exploring Twitter networks in parallel computing environments","authors":"Bo Xu, Yun Huang, N. Contractor","doi":"10.1145/2484762.2484811","DOIUrl":null,"url":null,"abstract":"Millions of users follow each other on Twitter and form a large and complex network. The size of the network creates statistical and computational challenges on exploring and examining individual behavior on Twitter. Using a sample of 697,628 Korean Twitter users and 34 million relations, this study investigates the patterns of unfollow behavior on Twitter, i.e. people removing others from their Twitter follow lists. We use Exponential Random Graph Models (p*/ERGMs) and Statnet in R to examine the impacts of reciprocity, status, embeddedness, homophily, and informativeness on tie dissolution. We perform data processing, statistics calculation, network sampling, and Markov chain Monte Carlo (MCMC) simulation on Gordon, a unique supercomputer at the San Diego Supercomputer Center (SDSC). The process demonstrates the role of advanced computing technologies in social science studies.","PeriodicalId":426819,"journal":{"name":"Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery","volume":"138 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2484762.2484811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Millions of users follow each other on Twitter and form a large and complex network. The size of the network creates statistical and computational challenges on exploring and examining individual behavior on Twitter. Using a sample of 697,628 Korean Twitter users and 34 million relations, this study investigates the patterns of unfollow behavior on Twitter, i.e. people removing others from their Twitter follow lists. We use Exponential Random Graph Models (p*/ERGMs) and Statnet in R to examine the impacts of reciprocity, status, embeddedness, homophily, and informativeness on tie dissolution. We perform data processing, statistics calculation, network sampling, and Markov chain Monte Carlo (MCMC) simulation on Gordon, a unique supercomputer at the San Diego Supercomputer Center (SDSC). The process demonstrates the role of advanced computing technologies in social science studies.
在并行计算环境中探索Twitter网络
数以百万计的用户在Twitter上相互关注,形成了一个庞大而复杂的网络。网络的规模为探索和检查Twitter上的个人行为带来了统计和计算方面的挑战。使用697,628名韩国Twitter用户和3400万关系的样本,本研究调查了Twitter上的取消关注行为模式,即人们将他人从Twitter关注列表中删除。我们使用指数随机图模型(p*/ERGMs)和R中的Statnet来检验互易性、状态、嵌入性、同质性和信息性对关系溶解的影响。我们在圣地亚哥超级计算机中心(SDSC)的一台独特的超级计算机Gordon上进行数据处理、统计计算、网络采样和马尔可夫链蒙特卡罗(MCMC)模拟。这个过程展示了先进的计算技术在社会科学研究中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信