desc2tag: A Reinforcement Learning Approach to Mashup Tag Recommendation

R. Anarfi, Benjamin A. Kwapong, K. K. Fletcher
{"title":"desc2tag: A Reinforcement Learning Approach to Mashup Tag Recommendation","authors":"R. Anarfi, Benjamin A. Kwapong, K. K. Fletcher","doi":"10.1109/SCC49832.2020.00073","DOIUrl":null,"url":null,"abstract":"Tags are critical sources of data for search, browsing and information retrieval. Manual selection of tags, over the years, have not been very effective. This paper introduces an approach to automatic mashup tag recommendation, based on reinforcement learning (RL). Our RL approach is able to carry out effective exploratory actions to automatically extract the and recommend tags for mashups. We perform experiments to evaluate our proposed method. Results from our experiments show that, the recommended mashup tags improve performance on the information retrieval task.","PeriodicalId":274909,"journal":{"name":"2020 IEEE International Conference on Services Computing (SCC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Services Computing (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC49832.2020.00073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tags are critical sources of data for search, browsing and information retrieval. Manual selection of tags, over the years, have not been very effective. This paper introduces an approach to automatic mashup tag recommendation, based on reinforcement learning (RL). Our RL approach is able to carry out effective exploratory actions to automatically extract the and recommend tags for mashups. We perform experiments to evaluate our proposed method. Results from our experiments show that, the recommended mashup tags improve performance on the information retrieval task.
desc2tag: Mashup标签推荐的强化学习方法
标签是搜索、浏览和信息检索的重要数据来源。多年来,手工选择标签并不是很有效。介绍了一种基于强化学习(RL)的混搭标签自动推荐方法。我们的RL方法能够执行有效的探索性操作来自动提取和推荐mashup的标记。我们通过实验来评估我们提出的方法。实验结果表明,推荐的mashup标记提高了信息检索任务的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信