Balancing of an imbalanced dataset by applying SMOTE variants and predicting neonatal mortality using ensemble learning techniques

Sivarajan A, Bala Aditya A, Sivasankar E
{"title":"Balancing of an imbalanced dataset by applying SMOTE variants and predicting neonatal mortality using ensemble learning techniques","authors":"Sivarajan A, Bala Aditya A, Sivasankar E","doi":"10.1109/ICITIIT54346.2022.9744204","DOIUrl":null,"url":null,"abstract":"Dynamic environment and imbalanced datasets are unavoidable challenges in developing medical diagnostic tools where incremental learning is a necessity. The prediction tools upon imbalanced data normally work with majority class bias, and it is not easy to recognize faulty classes. This work aims to solve the class imbalance problem by generating synthetic data using SMOTE variants to balance the dataset and predict the neonatal mortality by adopting different ensemble classification methods. This system will be applied to diagnose newborns, vulnerable to die in the initial period of 28 days after birth.","PeriodicalId":184353,"journal":{"name":"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITIIT54346.2022.9744204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic environment and imbalanced datasets are unavoidable challenges in developing medical diagnostic tools where incremental learning is a necessity. The prediction tools upon imbalanced data normally work with majority class bias, and it is not easy to recognize faulty classes. This work aims to solve the class imbalance problem by generating synthetic data using SMOTE variants to balance the dataset and predict the neonatal mortality by adopting different ensemble classification methods. This system will be applied to diagnose newborns, vulnerable to die in the initial period of 28 days after birth.
动态环境和不平衡的数据集是开发医疗诊断工具中不可避免的挑战,而增量学习是必要的。基于不平衡数据的预测工具通常具有多数类偏差,并且不容易识别错误类。本工作旨在通过使用SMOTE变量生成合成数据来平衡数据集,并通过采用不同的集成分类方法来预测新生儿死亡率,从而解决类失衡问题。该系统将用于诊断出生后28天内易死亡的新生儿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信