Mobility prediction and location management based on data mining

M. Daoui, Malika Belkadi, Lynda Chamek, M. Lalam, Sofiane Hamrioui, A. Berqia
{"title":"Mobility prediction and location management based on data mining","authors":"M. Daoui, Malika Belkadi, Lynda Chamek, M. Lalam, Sofiane Hamrioui, A. Berqia","doi":"10.1109/NGNS.2012.6656095","DOIUrl":null,"url":null,"abstract":"This paper presents a mobility prediction and location management technique based on one of the most used Data mining technique which is The association rules. Our solution can be implemented on a third-generation mobile network by exploiting the data available on existing infrastructure (roads, locations of base stations, ... etc.) and the users' displacements history. Simulations carried out using a realistic model of movements showed that our strategy can accurately predict up to 90% of the users' movements by knowing only their last two movements.","PeriodicalId":102045,"journal":{"name":"2012 Next Generation Networks and Services (NGNS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Next Generation Networks and Services (NGNS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NGNS.2012.6656095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents a mobility prediction and location management technique based on one of the most used Data mining technique which is The association rules. Our solution can be implemented on a third-generation mobile network by exploiting the data available on existing infrastructure (roads, locations of base stations, ... etc.) and the users' displacements history. Simulations carried out using a realistic model of movements showed that our strategy can accurately predict up to 90% of the users' movements by knowing only their last two movements.
基于数据挖掘的移动预测与位置管理
本文提出了一种基于关联规则的移动预测和位置管理技术。我们的解决方案可以通过利用现有基础设施(道路、基站位置等)上的可用数据,在第三代移动网络上实施。等)和用户的位移历史。使用真实的运动模型进行的模拟表明,我们的策略可以通过只知道用户最近的两次运动来准确预测高达90%的用户运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信