Digital Twin-Based Concept for Reliable Research Data Management Integrating Proprietary Data Sources for Hyperspectral Imaging

Alessa Rache, Tim Häußermann, J. Lehmann, J. Reichwald
{"title":"Digital Twin-Based Concept for Reliable Research Data Management Integrating Proprietary Data Sources for Hyperspectral Imaging","authors":"Alessa Rache, Tim Häußermann, J. Lehmann, J. Reichwald","doi":"10.52825/cordi.v1i.297","DOIUrl":null,"url":null,"abstract":"\n \n \nIn data-intensive research, reliable management of research data is a major challenge. In the field of Mass Spectrometry Imaging, vast amounts of data are being acquired from mostly proprietary data sources. Consequently, hindering seamless data integration into Research Data Management systems. Without a data repository, the continuous generation of scientific knowledge and innovative research based on existing information is limited. Moreover, to maintain the value of data to researchers throughout and beyond its lifecycle, FAIR principles for reliable data management approaches must be applied. To enable the required data transmission, the Digital Twin paradigm can be considered a reliable solution. The conceptual implementation of a heterogeneous mass spectrometer generating hyperspectral images leverages the Digital Twin to overcome common data management problems in data-intensive research. \n \n \n","PeriodicalId":359879,"journal":{"name":"Proceedings of the Conference on Research Data Infrastructure","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on Research Data Infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52825/cordi.v1i.297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In data-intensive research, reliable management of research data is a major challenge. In the field of Mass Spectrometry Imaging, vast amounts of data are being acquired from mostly proprietary data sources. Consequently, hindering seamless data integration into Research Data Management systems. Without a data repository, the continuous generation of scientific knowledge and innovative research based on existing information is limited. Moreover, to maintain the value of data to researchers throughout and beyond its lifecycle, FAIR principles for reliable data management approaches must be applied. To enable the required data transmission, the Digital Twin paradigm can be considered a reliable solution. The conceptual implementation of a heterogeneous mass spectrometer generating hyperspectral images leverages the Digital Twin to overcome common data management problems in data-intensive research.
基于数字孪生的高光谱成像可靠研究数据管理集成专有数据源的概念
在数据密集型研究中,研究数据的可靠管理是一个重大挑战。在质谱成像领域,大量的数据是从大多数专有数据源获得的。因此,阻碍了数据与研究数据管理系统的无缝集成。如果没有数据存储库,基于现有信息的科学知识和创新研究的持续产生就会受到限制。此外,为了在数据的整个生命周期和生命周期之外保持数据对研究人员的价值,必须应用可靠数据管理方法的FAIR原则。为了实现所需的数据传输,可以将数字孪生范式视为可靠的解决方案。异构质谱仪生成高光谱图像的概念实现利用数字孪生来克服数据密集型研究中常见的数据管理问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信