USV Target Interception Control With Reinforcement Learning and Motion Prediction Method

Y. Liu, Yuanda Wang, Lu Dong
{"title":"USV Target Interception Control With Reinforcement Learning and Motion Prediction Method","authors":"Y. Liu, Yuanda Wang, Lu Dong","doi":"10.1109/YAC57282.2022.10023694","DOIUrl":null,"url":null,"abstract":"In this paper, an unmanned surface vehicle (USV) target interception problem is studied with reinforcement learning (RL)-based method. In the proposed new structure, the proximal policy optimization (PPO) and proportional derivative (PD) are combined. First, the PD controller is used to predict the interception position. Then, the PPO algorithm is trained to control the USV, so that it can move quickly to the predicted position. By comparing with the traditional PPO algorithm, the simulation results verify that the proposed algorithm spends less time solving the problem of the USV interception of a moving target.","PeriodicalId":272227,"journal":{"name":"2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC)","volume":"35 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YAC57282.2022.10023694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an unmanned surface vehicle (USV) target interception problem is studied with reinforcement learning (RL)-based method. In the proposed new structure, the proximal policy optimization (PPO) and proportional derivative (PD) are combined. First, the PD controller is used to predict the interception position. Then, the PPO algorithm is trained to control the USV, so that it can move quickly to the predicted position. By comparing with the traditional PPO algorithm, the simulation results verify that the proposed algorithm spends less time solving the problem of the USV interception of a moving target.
基于强化学习和运动预测方法的USV目标拦截控制
本文采用基于强化学习(RL)的方法对无人水面车辆(USV)目标拦截问题进行了研究。在该结构中,将近似策略优化(PPO)和比例导数优化(PD)相结合。首先,利用PD控制器预测拦截位置。然后,训练PPO算法来控制USV,使其快速移动到预测位置。通过与传统PPO算法的比较,仿真结果验证了该算法在解决USV拦截运动目标问题上所花费的时间较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信