Coupling scheduler for MapReduce/Hadoop

Jian Tan, Xiaoqiao Meng, Li Zhang
{"title":"Coupling scheduler for MapReduce/Hadoop","authors":"Jian Tan, Xiaoqiao Meng, Li Zhang","doi":"10.1145/2287076.2287097","DOIUrl":null,"url":null,"abstract":"Current schedulers of MapReduce/Hadoop are quite successful in providing good performance. However improving spaces still exist: map and reduce tasks are not jointly optimized for scheduling, albeit there is a strong dependence between them. This can cause job starvation and bad data locality. We design a resource-aware scheduler for Hadoop, which couples the progresses of mappers and reducers, and jointly optimize the placements for both of them. This mitigates the starvation problem and improves the overall data locality. Our experiments demonstrate improvements to job response times by up to an order of magnitude.","PeriodicalId":330072,"journal":{"name":"IEEE International Symposium on High-Performance Parallel Distributed Computing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on High-Performance Parallel Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2287076.2287097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Current schedulers of MapReduce/Hadoop are quite successful in providing good performance. However improving spaces still exist: map and reduce tasks are not jointly optimized for scheduling, albeit there is a strong dependence between them. This can cause job starvation and bad data locality. We design a resource-aware scheduler for Hadoop, which couples the progresses of mappers and reducers, and jointly optimize the placements for both of them. This mitigates the starvation problem and improves the overall data locality. Our experiments demonstrate improvements to job response times by up to an order of magnitude.
MapReduce/Hadoop的耦合调度程序
当前的MapReduce/Hadoop调度器在提供良好的性能方面相当成功。然而,改进的空间仍然存在:map和reduce任务之间存在很强的依赖性,但它们并没有共同优化调度。这可能会导致作业短缺和错误的数据局部性。我们为Hadoop设计了一个资源感知的调度程序,它将映射器和减少器的进程耦合在一起,并共同优化它们的位置。这减轻了饥饿问题并改善了整体数据局部性。我们的实验表明,工作响应时间的改善可达一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信