A Boosting Approach to Forecasting the Volatility of Gold-Price Fluctuations Under Flexible Loss

Christian Pierdzioch, M. Risse, Sebastian Rohloff
{"title":"A Boosting Approach to Forecasting the Volatility of Gold-Price Fluctuations Under Flexible Loss","authors":"Christian Pierdzioch, M. Risse, Sebastian Rohloff","doi":"10.2139/ssrn.2513830","DOIUrl":null,"url":null,"abstract":"We use a boosting approach to study the time-varying out-of-sample informational content of various financial and macroeconomic variables for forecasting the volatility of gold-price fluctuations. We use an out-of-sample R2 statistic to evaluate forecasts as a function of the shape of a forecaster’s loss function. We show that, when compared to an autoregressive benchmark forecast, those forecasters tend to benefit from using predictions implied by the boosting approach who encounter a larger loss when underestimating rather than overestimating the future volatility of gold-price fluctuations. We use a simulation experiment to study the significance of this benefit.","PeriodicalId":292025,"journal":{"name":"Econometric Modeling: Commodity Markets eJournal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Commodity Markets eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2513830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

We use a boosting approach to study the time-varying out-of-sample informational content of various financial and macroeconomic variables for forecasting the volatility of gold-price fluctuations. We use an out-of-sample R2 statistic to evaluate forecasts as a function of the shape of a forecaster’s loss function. We show that, when compared to an autoregressive benchmark forecast, those forecasters tend to benefit from using predictions implied by the boosting approach who encounter a larger loss when underestimating rather than overestimating the future volatility of gold-price fluctuations. We use a simulation experiment to study the significance of this benefit.
弹性损失下黄金价格波动波动预测的助推方法
我们使用boosting方法来研究各种金融和宏观经济变量的随时间变化的样本外信息含量,以预测黄金价格波动的波动性。我们使用样本外R2统计量来评估预测,作为预测者损失函数形状的函数。我们表明,与自回归基准预测相比,那些预测者往往受益于使用提振方法隐含的预测,当低估而不是高估黄金价格波动的未来波动性时,他们会遇到更大的损失。我们用模拟实验来研究这一效益的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信