Shape-Controlled Ternary Interpolating Subdivision Scheme Based on Approximating Subdivision

Jun Pan, Kerui Chen, Qian Chen
{"title":"Shape-Controlled Ternary Interpolating Subdivision Scheme Based on Approximating Subdivision","authors":"Jun Pan, Kerui Chen, Qian Chen","doi":"10.1109/ICDH.2012.33","DOIUrl":null,"url":null,"abstract":"In this paper a shape-controlled interpolating subdivision scheme is presented. It is derived by directly performing operations on geometric rules on approximating subdivision. The behavior of the limit curve produced by the proposed subdivision scheme is analyzed by the Laurent polynomial and attains C2 degree of smoothness. Furthermore, a non-uniform shape-controlled subdivision with shape control parameters is introduced. It allows a different tension value for every edge of the original control polygon.","PeriodicalId":308799,"journal":{"name":"2012 Fourth International Conference on Digital Home","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Digital Home","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDH.2012.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper a shape-controlled interpolating subdivision scheme is presented. It is derived by directly performing operations on geometric rules on approximating subdivision. The behavior of the limit curve produced by the proposed subdivision scheme is analyzed by the Laurent polynomial and attains C2 degree of smoothness. Furthermore, a non-uniform shape-controlled subdivision with shape control parameters is introduced. It allows a different tension value for every edge of the original control polygon.
基于近似细分的形状控制三元插值细分方案
本文提出了一种形状控制的插值细分方案。它是通过直接对近似细分的几何规则进行运算而得到的。用Laurent多项式分析了该细分方案生成的极限曲线的行为,得到了C2的光滑度。此外,还引入了带形状控制参数的非均匀形状控制细分。它允许对原始控制多边形的每个边使用不同的张力值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信