Uniqueness of the solution of one class of Volterra-Stieltjes linear integral equations of the third kind

A. Asanov, K. Matanova, Eliza Absamat kyzy
{"title":"Uniqueness of the solution of one class of Volterra-Stieltjes linear integral equations of the third kind","authors":"A. Asanov, K. Matanova, Eliza Absamat kyzy","doi":"10.15507/2079-6900.24.202201.11-20","DOIUrl":null,"url":null,"abstract":"In this paper, the question of uniqueness of the solution for one class of Volterra-Stieltjes linear integral equations of the third kind is investigated. The notion of derivative with respect to an increasing function was introduced by A. Asanov in 2001 and plays special role in the study. This notion is a generalization of the usual concept of a derivative function and is an inverse operator for one class of the Stieltjes integral. Basing on idea of such derivative, using the method of integral transformations and the method of non-negative quadratic forms, the uniqueness theorems for the solution of the considered class of integral equations are proved. Examples satisfying the conditions of uniqueness theorems are also constructed in the paper. It becomes clear from these examples that it is difficult to study Volterra-Stieltjes linear integral equations of the first and third kind without using the notion of derivative with respect to increasing function.","PeriodicalId":273445,"journal":{"name":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15507/2079-6900.24.202201.11-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the question of uniqueness of the solution for one class of Volterra-Stieltjes linear integral equations of the third kind is investigated. The notion of derivative with respect to an increasing function was introduced by A. Asanov in 2001 and plays special role in the study. This notion is a generalization of the usual concept of a derivative function and is an inverse operator for one class of the Stieltjes integral. Basing on idea of such derivative, using the method of integral transformations and the method of non-negative quadratic forms, the uniqueness theorems for the solution of the considered class of integral equations are proved. Examples satisfying the conditions of uniqueness theorems are also constructed in the paper. It becomes clear from these examples that it is difficult to study Volterra-Stieltjes linear integral equations of the first and third kind without using the notion of derivative with respect to increasing function.
一类第三类Volterra-Stieltjes线性积分方程解的唯一性
本文研究了一类第三类Volterra-Stieltjes线性积分方程解的唯一性问题。A. Asanov于2001年引入了关于递增函数的导数的概念,在研究中起着特殊的作用。这个概念是导数函数一般概念的推广,是一类Stieltjes积分的逆算子。基于这类导数的思想,利用积分变换的方法和非负二次型的方法,证明了这类积分方程解的唯一性定理。文中还构造了满足唯一性定理条件的实例。从这些例子可以清楚地看出,如果不使用对递增函数求导的概念,很难研究第一类和第三类Volterra-Stieltjes线性积分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信