L. Hemaspaandra, Mandar Juvekar, A. Nadjimzadah, Patrick Phillips
{"title":"Gaps, Ambiguity, and Establishing Complexity-Class Containments via Iterative Constant-Setting","authors":"L. Hemaspaandra, Mandar Juvekar, A. Nadjimzadah, Patrick Phillips","doi":"10.4230/LIPIcs.MFCS.2022.57","DOIUrl":null,"url":null,"abstract":"Cai and Hemachandra used iterative constant-setting to prove that Few ⊆ ⊕ P (and thus that FewP ⊆ ⊕ P). In this paper, we note that there is a tension between the nondeterministic ambiguity of the class one is seeking to capture, and the density (or, to be more precise, the needed “nongappy”-ness) of the easy-to-find “targets” used in iterative constant-setting. In particular, we show that even less restrictive gap-size upper bounds regarding the targets allow one to capture ambiguity-limited classes. Through a flexible, metatheorem-based approach, we do so for a wide range of classes including the logarithmic-ambiguity version of Valiant’s unambiguous nondeterminism class UP. Our work lowers the bar for what advances regarding the existence of infinite, P-printable sets of primes would suffice to show that restricted counting classes based on the primes have the power to accept superconstant-ambiguity analogues of UP. As an application of our work, we prove that the Lenstra–Pomerance–Wagstaff Conjecture implies that all O (log log n )-ambiguity NP sets are in the restricted counting class RC PRIMES .","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.MFCS.2022.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cai and Hemachandra used iterative constant-setting to prove that Few ⊆ ⊕ P (and thus that FewP ⊆ ⊕ P). In this paper, we note that there is a tension between the nondeterministic ambiguity of the class one is seeking to capture, and the density (or, to be more precise, the needed “nongappy”-ness) of the easy-to-find “targets” used in iterative constant-setting. In particular, we show that even less restrictive gap-size upper bounds regarding the targets allow one to capture ambiguity-limited classes. Through a flexible, metatheorem-based approach, we do so for a wide range of classes including the logarithmic-ambiguity version of Valiant’s unambiguous nondeterminism class UP. Our work lowers the bar for what advances regarding the existence of infinite, P-printable sets of primes would suffice to show that restricted counting classes based on the primes have the power to accept superconstant-ambiguity analogues of UP. As an application of our work, we prove that the Lenstra–Pomerance–Wagstaff Conjecture implies that all O (log log n )-ambiguity NP sets are in the restricted counting class RC PRIMES .